Article Text

Original research
Assessment of cardiovascular risk tools as predictors of cardiovascular disease events in systemic lupus erythematosus
  1. Jagan Sivakumaran1,
  2. Paula Harvey2,
  3. Ahmed Omar1,
  4. Oshrat Tayer-Shifman3,
  5. Murray B Urowitz4,5,
  6. Dafna D Gladman1,5,
  7. Nicole Anderson6,
  8. Jiandong Su5 and
  9. Zahi Touma1,5
  1. 1University of Toronto, Toronto, Ontario, Canada
  2. 2Women's College Research Institute, Women's College Hospital, Toronto, Ontario, Canada
  3. 3Department of Internal Medicine B and Rheumatology Service, Meir Medical Center, Kfar Saba, Israel
  4. 4Medicine, University of Toronto, Toronto, Ontario, Canada
  5. 5Toronto Western Hospital Centre for Prognosis Studies in the Rheumatic Diseases, Toronto, Ontario, Canada
  6. 6Centre for Prognosis Studies in the Rheumatic Diseases, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
  1. Correspondence to Dr Zahi Touma; Zahi.Touma{at}uhn.ca

Abstract

Background SLE is an independent risk factor for cardiovascular disease (CVD). This study aimed to determine which among QRISK2, QRISK3, Framingham Risk Score (FRS), modified Framingham Risk Score (mFRS) and SLE Cardiovascular Risk Equation (SLECRE) best predicts CVD.

Methods This is a single-centre analysis on 1887 patients with SLE followed prospectively according to a standard protocol. Tools’ scores were evaluated against CVD development at/within 10 years for patients with CVD and without CVD. For patients with CVD, the index date for risk score calculation was chosen as close to 10 years prior to CVD event. For patients without CVD, risk scores were calculated as close to 10 years prior to the most recent clinic appointment. Proportions of low-risk (<10%), intermediate-risk (10%–20%) and high-risk (>20%) patients for developing CVD according to each tool were determined, allowing sensitivity, specificity, positive/negative predictive value and concordance (c) statistics analysis.

Results Among 1887 patients, 232 CVD events occurred. QRISK2 and FRS, and QRISK3 and mFRS, performed similarly. SLECRE classified the highest number of patients as intermediate and high risk. Sensitivities and specificities were 19% and 93% for QRISK2, 22% and 93% for FRS, 46% and 83% for mFRS, 47% and 78% for QRISK3, and 61% and 64% for SLECRE. Tools were similar in negative predictive value, ranging from 89% (QRISK2) to 92% (SLECRE). FRS and mFRS had the greatest c-statistics (0.73), while QRISK3 and SLECRE had the lowest (0. 67).

Conclusion mFRS was superior to FRS and was not outperformed by the QRISK tools. SLECRE had the highest sensitivity but the lowest specificity. mFRS is an SLE-adjusted practical tool with a simple, intuitive scoring system reasonably appropriate for ambulatory settings, with more research needed to develop more accurate CVD risk prediction tools in this population.

  • lupus erythematosus
  • systemic
  • cardiovascular diseases
  • inflammation

Data availability statement

All data relevant to the study are included in the article or uploaded as supplementary information.

http://creativecommons.org/licenses/by-nc/4.0/

This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

Statistics from Altmetric.com

Request Permissions

If you wish to reuse any or all of this article please use the link below which will take you to the Copyright Clearance Center’s RightsLink service. You will be able to get a quick price and instant permission to reuse the content in many different ways.

Data availability statement

All data relevant to the study are included in the article or uploaded as supplementary information.

View Full Text

Supplementary materials

  • Supplementary Data

    This web only file has been produced by the BMJ Publishing Group from an electronic file supplied by the author(s) and has not been edited for content.

Footnotes

  • Contributors All authors were involved in the study conception and design, acquisition of data, and analysis and interpretation of data. ZT had full access to all of the data in the study and takes responsibility for the integrity of the data and the accuracy of the data.

  • Funding This project is supported by the Lupus Foundation of America Gina M Finzi Student Fellowship received by JS. The Toronto Lupus Program is supported financially by the Lou Rocca Family, Bozzo Family and Lupus Ontario.

  • Competing interests None declared.

  • Provenance and peer review Not commissioned; externally peer reviewed.

  • Supplemental material This content has been supplied by the author(s). It has not been vetted by BMJ Publishing Group Limited (BMJ) and may not have been peer-reviewed. Any opinions or recommendations discussed are solely those of the author(s) and are not endorsed by BMJ. BMJ disclaims all liability and responsibility arising from any reliance placed on the content. Where the content includes any translated material, BMJ does not warrant the accuracy and reliability of the translations (including but not limited to local regulations, clinical guidelines, terminology, drug names and drug dosages), and is not responsible for any error and/or omissions arising from translation and adaptation or otherwise.