Lower vitamin D levels are associated with higher systemic lupus erythematosus activity, but not predictive of disease flare-up =============================================================================================================================== * Yoland Schoindre * Moez Jallouli * Marie-Laure Tanguy * Pascale Ghillani * Lionel Galicier * Olivier Aumaître * Camille Francès * Véronique Le Guern * Frédéric Lioté * Amar Smail * Nicolas Limal * Laurent Perard * Hélène Desmurs-Clavel * Du Le Thi Huong * Bouchra Asli * Jean-Emmanuel Kahn * Laurent Sailler * Félix Ackermann * Thomas Papo * Karim Sacré * Olivier Fain * Jérôme Stirnemann * Patrice Cacoub * Gaëlle Leroux * Judith Cohen-Bittan * Jean-Sébastien Hulot * Philippe Lechat * Lucile Musset * Jean-Charles Piette * Zahir Amoura * Jean-Claude Souberbielle * Nathalie Costedoat-Chalumeau ## Abstract **Objectives** Growing evidence suggests that vitamin D plays a key role in the pathogenesis and progression of autoimmune diseases, including systemic lupus erythematosus (SLE). Recent studies have found an association between lower serum 25-hydroxyvitamin D (25(OH)D) levels and higher SLE activity. We studied the relationship between 25(OH)D levels and Systemic Lupus Erythematosus Disease Activity Index (SLEDAI) score, and we assessed for the first time the role of vitamin D in predicting SLE flare-ups. **Methods** Serum 25(OH)D levels were measured in 170 patients with SLE who were prospectively followed up for 6 months (Plaquenil LUpus Systemic study, ClinicalTrials.gov number [NCT00413361](http://lupus.bmj.com/lookup/external-ref?link_type=CLINTRIALGOV&access_num=NCT00413361&atom=%2Flupusscimed%2F1%2F1%2Fe000027.atom)). **Results** The mean SLEDAI score was 2.03±2.43 and 12.3% patients had active disease (SLEDAI ≥6). The mean 25(OH)D level was 20.6±9.8 ng/mL. Deficiency (25(OH)D <10 ng/mL) was observed in 27 (15.9%), insufficiency (10≤25(OH)D<30) in 112 (65.9%) and optimal vitamin D status (25(OH)D≥30) in 31 (18.2%) patients. In multivariate analysis, female gender (p=0.018), absence of defined antiphospholipid syndrome (p=0.002) and higher creatinine clearance (p=0.004) were predictive of lower 25(OH)D levels. In multivariate analysis, lower 25(OH)D levels were associated with high SLE activity (p=0.02). Relapse-free survival rate was not statistically different according to the vitamin D status during the 6-month follow-up (p=0.22). **Conclusions** We found a low vitamin D status in the majority of patients with SLE, and a modest association between lower 25(OH)D levels and high disease activity. There was no association between baseline 25(OH)D levels and relapse-free survival rate. * vitamin D * Systemic Lupus Erythematosus * Autoimmune Diseases * hydroxychloroquine ### Key messages * Suboptimal vitamin D status is found in more than 80% of patients with SLE. * Low vitamin D levels were are statistically associated with high disease activity. * Baseline vitamin D levels were not associated with relapse-free survival rate during a 6-month follow-up. ## Introduction 1,25-Dihydroxyvitamin D (1,25(OH)2D), or calcitriol, the most active form of vitamin D, is a secosteroid hormone recognised as essential in calcium metabolism and bone homeostasis. Mounting evidence exists for a role of vitamin D in non-skeletal diseases, such as autoimmune diseases. Specifically, both in vitro and in vivo studies of vitamin D effects provide an immunological basis for potential beneficial effects of vitamin D in systemic lupus erythematosus (SLE).1 Studies using animal models of SLE demonstrated a preventive action of calcitriol or an analogue on SLE manifestations.2–5 Vitamin D and its synthetic analogues significantly reduced polyclonal and anti-dsDNA immunoglobulin G production by SLE peripheral blood mononuclear cells (PBMC) in vitro.6 Increased B cell activation was associated with decreased 25(OH)D levels in patients with SLE, suggesting that vitamin D deficiency may contribute to increased B cell activation in SLE.7 We have recently demonstrated that high-dose vitamin D supplementation provides beneficial immunological effects in vivo in patients with SLE with an increase of regulatory T cells and a decrease of Th17, Th1 and memory B cells.8 A suppressive action of vitamin D on the interferon α signature, considered as central in the pathophysiology of SLE, has been demonstrated in vitro9 and in vivo.7 Genetic studies have pointed out associations between allelic variation within vitamin D regulatory genes and susceptibility to SLE.10 ,11 Many epidemiological studies reported increased prevalence of vitamin D deficiency and insufficiency in patients with SLE,12–16 and recent studies have reported an association between lower serum 25(OH)D concentration and higher disease activity.9 ,13 ,16–19 To our knowledge, the role of 25(OH)D level in predicting SLE flare-ups has never been assessed. The objectives of our study were (1) to assess the relationship between 25(OH)D levels and SLE disease activity, (2) to determine the predictive factors of vitamin D status and (3) to determine whether 25(OH)D levels predict disease flare-ups in the 6-month follow-up. ## Patients and methods ### Study population This study is an ancillary study of the Plaquenil LUpus Systemic study (PLUS; ClinicalTrials.gov number NCT0041336), which is a randomised, double-blind, placebo-controlled, multicentre trial that was conducted from June 2007 through August 2010 at 37 centres in France.20 This research received the approval of the Saint-Louis Hospital ethic committee. All the patients involved signed a consent form. Briefly, relevant inclusion criteria were adult patients with SLE according to ACR criteria,21 treated with hydroxychloroquine (HCQ) for at least 6 months. SLE had to be stable with no increase in the steroid dosage during the three previous weeks, a steroid dosage ≤0.5 mg/kg/day of prednisone or equivalent, no modifications of a possible immunosuppressant drug during the two previous months and a Safety of Estrogens in Lupus Erythematosus National Assessment-Systemic Lupus Erythematosus Disease Activity Index (SELENA-SLEDAI) ≤12. The main relevant exclusion criteria were estimated glomerular filtration rate lower than 60 mL/min/1.73 m², pregnancy and known or suspected non-adherence. Antiphospholipid syndrome (APS) was defined according to the Sydney criteria.22 The details regarding supplemental vitamin D intake were not available. Nevertheless, the usual daily vitamin D intake prescribed to prevent glucocorticoid-induced osteoporosis was comprised between 400 and 880 UI of vitamin D3. At inclusion, all subjects had SLE activity assessment and blood examination including a centralised blood HCQ concentration measurement. Patients with blood HCQ concentration ranging between 100 and 750 ng/mL at inclusion, which is a range of concentrations that was previously identified as associated with a higher risk to develop flare-ups,23 were eligible for randomisation. Randomised patients received either the same dose of HCQ (group 1) or an increased dose aimed at achieving a blood HCQ concentration dosage above 1000 ng/mL (group 2). The maximal dosage of HCQ was 800 mg/day. ### Follow-up Randomised patients were followed up for 7 months. Assessments of SLE activity and side effects were performed in all patients at 1, 3, 5 and 7 months (M1, M3, M5 and M7 visit, respectively). The primary outcome measure was the occurrence of SLE flare-ups, as defined by the SELENA-SLEDAI flare composite score.24 Briefly, this score includes three elements: the SELENA-SLEDAI score; an assessment of new or worsening disease activity, medication changes and hospitalisations not captured with the use of the SLEDAI; and the score on the physician's global assessment visual analogue scale. Information about the use of this score was provided at each site before the study began. We chose to analyse the serum sampled at M1 since (HCQ) were considered stable at that moment (patients had reached their target (HCQ)). ### Serum 25(OH) vitamin D measurement Blood samples were collected and processed immediately in each centre. After centrifugation at 2000*g* for 10 min, serum samples were stored at −80°C and thawed only once. Serum 25(OH)D was measured by means of a radio-immunoassay after simple extraction with acetonitrile (DiaSorin, Stillwater, Minnesota, USA), as described previously.25 The interassay and intraassay coefficients of variation were <7% and <5%, respectively, throughout the entire range of concentrations. The detection limit was 3 ng/mL. Samples with a measured concentration below 3 ng/mL were arbitrarily attributed a value of 2 ng/mL. The measurements were performed in a single laboratory, which participates in the DEQAS proficiency testing and finds results that fall within 10% of the all-laboratory trimmed mean of this International Quality Control. Vitamin D status was characterised as deficiency (<10 ng/mL), insufficiency (10≤25(OH)D<30 ng/mL) and optimal vitamin D status (≥30 ng/mL). ### Statistical analysis Predictive factors of serum 25(OH)D levels were identified via univariate analysis with a linear regression model for quantitative variables and with Mann–Whitney tests for qualitative variables. Variables with univariate p value <0.2 were included in a multivariate stepwise linear regression model. Model fit has been checked by visual inspection of the residuals. To assess the relationship between serum 25(OH)D levels and SELENA-SLEDAI score (score ≥6 vs <6), we performed a stepwise logistic regression. Variables included in the model were age, sex, HCQ levels, prednisone use and serum 25(OH)D levels. Association between vitamin D status (deficiency, insufficiency, optimal level) and relapse-free survival rate was tested in univariate analysis using the log-rank test. Relapse-free survival rate was calculated from M1 to the date of first flare-up. Patients alive without occurrence of flare-up at the date of last follow-up were censored at this date. To evaluate the effect of vitamin D status after adjustment for other potentially predictive variables, a multivariate Cox regression model was performed. Variables included in the multivariate Cox model were SELENA-SLEDAI score (≥6 vs <6), score on the physician's global assessment visual analogue scale (≥ median vs < median=0.11), C3, anti-dsDNA levels and vitamin D status. All tests were two-sided. p Values less than 0.05 were considered statistically significant. All analyses were performed with the SAS software V.9.2 (SAS Institute, Cary, North Carolina, USA). ## Results ### Study population The study population included 170 of the 171 randomised patients (one patient had no sample at M1). Patient characteristics are listed in table 1. Of the 170 subjects, 148 (87%) were women, the mean age was 40±11 years and the median disease duration was 7.8 years (0.5–30.9). An APS was defined in 16% of the patients. The mean estimated creatinine clearance using Cockroft–Gault equation was 108±34 mL/min. The median SELENA-SLEDAI score was 1 (0–18). According to the design of the study, all the subjects were treated with HCQ. Other SLE medications included corticosteroids (55% with a mean dose of 8.0±4 mg/d) and immunosuppressant drugs (19%). View this table: [Table 1](http://lupus.bmj.com/content/1/1/e000027/T1) Table 1 Characteristics of the 170 patients with SLE ### Vitamin D status The mean serum 25(OH)D level was 20.6±9.8 ng/mL. In total, 27 (15.9%) subjects had vitamin D deficiency (25(OH)D<10 ng/mL), 112 (65.9%) had vitamin D insufficiency (10≤25(OH)D<30) and 31 (18.2%) had optimal vitamin D levels (25(OH)D≥30). The distribution of vitamin D levels is shown in figure 1. ![Figure 1](http://lupus.bmj.com/https://lupus.bmj.com/content/lupusscimed/1/1/e000027/F1.medium.gif) [Figure 1](http://lupus.bmj.com/content/1/1/e000027/F1) Figure 1 The central line marks the median value and the edges of the box mark the first and third quartiles. The vertical line issuing from the box extends to the minimum and maximum values. In the univariate analysis (table 2), gender, age, body mass index (BMI), ethnicity, disease duration, photosensitivity, creatinine clearance, APS, anticoagulant treatment and season were associated with 25(OH)D levels with a p value <0.2 and were then included in the multivariate analysis. Of these, only female gender (p=0.018), an absence of defined APS (p=0.002) and higher creatinine clearance (p=0.004) were associated with lower 25(OH)D levels in multivariate analysis (table 3). View this table: [Table 2](http://lupus.bmj.com/content/1/1/e000027/T2) Table 2 Predictors of 25(OH)D levels in univariate analysis View this table: [Table 3](http://lupus.bmj.com/content/1/1/e000027/T3) Table 3 Predictors of lower 25(OH)D levels in multivariate analysis There was no statistically significant correlation between 25(OH)D levels and blood HCQ concentrations (p=0.66). ### Relationship between 25(OH)D levels and SLE activity The primary objective was to assess the relationship between 25(OH)D levels and SLE activity. Lower 25(OH)D levels were associated with significantly high SLE activity defined by a SELENA-SLEDAI score ≥6 (p=0.02), with an odd ratio of 0.93 (95% CI (0.873 to 0.989)). Prednisone use was also significantly associated with SLE activity (table 4). View this table: [Table 4](http://lupus.bmj.com/content/1/1/e000027/T4) Table 4 Association of 25(OH)D levels and SLE activity (SELENA-SLEDAI ≥6) in multivariate analysis We then analysed the relationship between 25(OH)D levels and the risk of SLE flare-up. At M1, the mean 25(OH)D level was not significantly different in the 45 patients who developed a flare-up during the 6 months of follow-up and in the 125 who did not (19.3±9.6 vs 21.1±9.9 ng/mL, respectively). Relapse-free survival rate at 6 months was 63% in patients with vitamin D deficiency, 77% in patients with insufficiency and 77% in patients with optimal vitamin D status (p=0.22). We then adjusted for SELENA-SLEDAI (≥6 vs <6), physician's global assessment visual analogue scale (≥0.11 vs <0.11), C3 levels and anti-dsDNA levels. SELENA-SLEDAI at M1 (HR=3.14; 95% CI 1.54 to 6.4, p=0.002), physician's global assessment visual analogue scale (HR=2.78; 95% CI 1.4 to 5.5, p=0.003) and anti-dsDNA levels (HR=1.002; 95% CI 1.0001 to 1.004, p=0.04) were significantly predictive of relapse-free survival rate. ## Discussion The optimal vitamin D level is defined as greater than 30 ng/mL because lower levels are associated with deleterious compensatory secondary hyperparathyroidism.27 Consistently with other studies in SLE,12–16 ,18 ,28 we found a high proportion of patients with SLE with vitamin D deficiency and insufficiency (15.4% and 67.3%, respectively). Regarding the factors associated with vitamin D deficiency, female gender, higher creatinine clearance and absence of defined APS were associated with lower 25(OH)D levels in multivariate analysis. Female gender is a classical risk factor for hypovitaminosis D in the general population29–31 and in patients with SLE.16 ,26 This might be explained by differences in outdoor activities or clothing,30 lower body surface area32 and androgen-related differences in vitamin D binding protein levels, in the precursor production by the skin or in the 25-hydroxylation by the liver.29 Levels of serum 25(OH)D are known to decrease with decreasing glomerular filtration rate in patients with chronic kidney diseases.31 ,33 However, in the cohort of the Third National Health and Nutrition Examination Survey (NHANES III), the adjusted mean serum 25(OH)D was higher in patients with mildly decreased kidney function (60