Article Text

DNA methylation patterns in naïve CD4+ T cells identify epigenetic susceptibility loci for malar rash and discoid rash in systemic lupus erythematosus
  1. Paul Renauer1,
  2. Patrick Coit1,
  3. Matlock A Jeffries2,
  4. Joan T Merrill3,
  5. W Joseph McCune1,
  6. Kathleen Maksimowicz-McKinnon4 and
  7. Amr H Sawalha1,5
  1. 1Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
  2. 2Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
  3. 3Clinical Pharmacology Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
  4. 4Division of Rheumatology, Henry Ford Health System, Detroit, Michigan, USA
  5. 5Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
  1. Correspondence to Dr Amr H Sawalha; asawalha{at}umich.edu

Abstract

Objective Systemic lupus erythematosus (SLE) is a complex autoimmune disease characterised by heterogeneous clinical manifestations, autoantibody production and epigenetic dysregulation in T cells. We sought to investigate the epigenetic contribution to the development of cutaneous manifestations in SLE.

Methods We performed genome-wide DNA methylation analyses in patients with SLE stratified by a history of malar rash, discoid rash or neither cutaneous manifestation, and age, sex and ethnicity matched healthy controls. We characterised differentially methylated regions (DMRs) in naïve CD4+ T cells unique to each disease subset, and assessed functional relationships between DMRs using bioinformatic approaches.

Results We identified 36 and 37 unique DMRs that contribute to the epigenetic susceptibility to malar rash and discoid rash, respectively. These DMRs were primarily localised to genes mediating cell proliferation and apoptosis. Hypomethylation of MIR886 and TRIM69, and hypermethylation of RNF39 were specific to patients with SLE with a history of malar rash. Hypomethylation of the cytoskeleton-related gene RHOJ was specific to patients with SLE with a history of discoid rash. In addition, discoid rash-specific hypomethylated DMRs were found in genes involved in antigen-processing and presentation such as TAP1 and PSMB8. Network analyses showed that DMRs in patients with SLE with but not without a history of cutaneous manifestations are associated with TAP-dependent processing and major histocompatibility-class I antigen cross-presentation (p=3.66×10−18 in malar rash, and 3.67×10−13 in discoid rash).

Conclusions We characterised DNA methylation changes in naïve CD4+ T cells specific to malar rash and discoid rash in patients with SLE. These data suggest unique epigenetic susceptibility loci that predispose to or are associated with the development of cutaneous manifestations in SLE.

  • Systemic Lupus Erythematosus
  • Gene Polymorphism
  • Autoimmune Diseases

This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

Statistics from Altmetric.com

Request Permissions

If you wish to reuse any or all of this article please use the link below which will take you to the Copyright Clearance Center’s RightsLink service. You will be able to get a quick price and instant permission to reuse the content in many different ways.

Supplementary materials

  • Supplementary Data

    This web only file has been produced by the BMJ Publishing Group from an electronic file supplied by the author(s) and has not been edited for content.

    Files in this Data Supplement: