Acknowledgements This study was performed using data from the GLADEL cohort. ## CE-20 ## LUPUS AUTO-ANTIBODIES AND CLINICAL OUTCOMES AMONG JAMAICAN SLE PATIENTS Davis Stacy*, Onyefulu Cynthia, De Ceulaer Karel. Division of Rheumatology, Department of Medicine, University of the West Indies, Mona 10.1136/lupus-2016-000179.99 Background The purpose of this study is to correlate lupus antibodies with clinical features of Jamaican SLE patients and assess their predictive value. Materials and methods The study was guided by two research questions. To answer these questions, an ex-post facto research design was used. This design was used because the subjects already had Lupus before treatment, which paved the way for a retrospective study of possible relationships and effects of the treatments to be conducted. The sample size used was (n = 136). Between May 2009 and December 2010, 136 SLE patients were tested for auto-antibodies. Results Fifty five percent were positive for anti-ssDNA, 35% positive for anti-dsDNA, 46% for anti-Sm, 83% for anti-RNP/ Sm, 76% for anti-Ro, 31% for anti-La, 30% for anti-histone and 65% for anti-chromatin. After a mean follow up of 4.5 years, the findings showed that elevated ssDNA and dsDNA in the initial samples were predictive of proteinuria, while elevated anti-Sm levels were predictive of proteinuria, low haemoglobin, lymphopenia and increased heart rate. The results of the Pearson Product Moment Correlation showed a weak to moderation relationships between ssDNA and Creartinine (r = 0.209, p < 0.05); DMARD use (r = 0.226, p < 0.05); Proteinuria (r = 0.286, p < 0.01); and Average Prednisone Dose (APD) (r = 0.363, p < 0.01). A weak to moderation relationships were also observed between dsDNA and Hb (r = -0.218, p < 0.05); Proteinuria (r = 0.399, p < 0.01); and APD (r = 0.457, p < 0.01). Anti SM correlated with Proteinuria (r = 0.374, p < 0.05) while anti RNP/SM correlated with Hb (r = 0.304, p < 0.05), and anti-Histone correlated with Proteinuria (r = 0.461, p < 0.05). The simple regression analysis conducted to examine if SM be used to predict heart rate, Hb, and Lymphocytes. The results were significant: Hb $(R^2 = 0.217, F = 23.843, p < 0.01)$; Hb and APD $(R^2 = 0.262, p < 0.01)$ F = 15.070, p < 0.01); and Hb, APD and organ involvement $(R^2 = 0.305, F = 12.311, p < 0.01).$ Conclusions This retrospective study showed that elevated ssDNA and dsDNA in the initial samples were predictive of proteinuria, while elevated anti-Sm levels were predictive of proteinuria, low haemoglobin, lymphopenia and increased heart rate. CE-21 ## THE PREVALENCE AND DETERMINANTS OF ANTI-DFS70 ANTIBODIES IN AN INTERNATIONAL INCEPTION COHORT OF SYSTEMIC LUPUS ERYTHEMATOSUS (SLE) PATIENTS ¹May Choi, ¹**Ann Clarke***, ²John G Hanly, ^{3,4}Murray Urowitz, ⁵Juanita Romero-Diaz, ⁶Caroline Gordon, ⁷Sang-Cheol Bae, ⁸Sasha Bernatsky, ⁹Daniel J Wallace, ¹⁰Joan T Merrill, ¹¹David A Isenberg, ¹²Anisur Rahman, ¹³Ellen M Ginzler, ¹⁴Paul R Fortin, ¹⁵Dafna Gladman, ¹⁶Jorge Sanchez-Guerrero, ¹⁷Michelle Petri, ¹⁸Ian N Bruce, ¹⁹Mary Anne Dooley, ²⁰Rosalind Ramsey-Goldman, ²¹Cynthia Aranow, ²²Graciela S Alarcon, ²³Kristján Steinsson, ²⁴Ola Nived. ²⁵Gunnar K Sturfelt. ²⁶Susan Manzi. ²⁷Munther Khamashta. ²⁸Ronald F van Vollenhoven, ²⁹Asad Zoma, ³⁰Guillermo Ruiz-Irastorza, ³¹S Sam Lim, ³²Thomas Stoll, ³³Murat Inanc, ³⁴Kenneth C Kalunian, ³⁵Diane L Kamen, ³⁶Peter Maddison, ³⁷Christine A Peschken, ³⁸Søren Jacobsen, ³⁹Anca Askanase, ⁴⁰Jill P Buyon, ⁴¹W Winn Chatham, ⁴²Manuel Ramos-Casals, ⁴³Yvan St Pierre, ¹Marvin J Fritzler. ¹Medicine, University of Calgary, Calgary, AB, Canada; ²Rheumatology, Dalhousie University and Nova Scotia Health Authority, Halifax, NS, Canada; ³Rheumatology, TWH, Toronto, ON, Canada; ⁴Rheumatology, U of Toronto, Toronto Western Hospital, Toronto, ON, Canada; ⁵Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico; ⁶Rheumatology, University of Birmingham, Birmingham, United Kingdom; ⁷Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, South Korea; 8Rheumatology/Clinical Epidemiology, McGill University, Montreal, QC, Canada; ⁹Cedars-Sinai Medical Centre, West Hollywood, CA, USA; ¹⁰Clinical Pharmacology, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA; ¹¹Rayne Institute, Centre for Rheumatology Research, UCL Division of Medicine, London, United Kingdom; 12Centre for Rheumatology Research, U College of London, London, United Kingdom; ¹³Medicine, SUNY-Downstate, Brooklyn, NY, USA; ¹⁴Rheumatology, University of Laval, Quebec, QC, Canada; ¹⁵Rheumatology, University of Toronto, Toronto Western Hospital, Toronto, ON, Canada; ¹⁶Rheumatology, Toronto Western Hospital, Toronto, ON, Canada; 17Rheumatology, Johns Hopkins University Hospital, Baltimore, MD, USA; 18Central Manchester University Hospital and Manchester Academic Health Science Centre, NIHR Manchester, Musculoskeletal Biomedical Research Unit, Manchester, United Kingdom; ¹⁹UNC Kidney Centre, University of North Carolina, Chapel Hill, NC, USA; ²⁰Rheumatology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA; ²¹Feinstein Institute for Medical Research, Mahasset, NY, USA; ²²Medicine, University of Alabama at Birmingham, Birmingham, AL, USA; 23Rheumatology, University Hospital, Reykjavik, Iceland; ²⁴Rheumatology, Inst of Clinical sciences, Lund, Sweden; ²⁵Department of Rheumatology, University Hospital Lund, Lund, Sweden; ²⁶Rheumatology, Allegheny Health Network, Pittsburgh, PA, USA; ²⁷Graham Hughes Lupus Research Laboratory, The Rayne Institute, St Thomas' Hospital, London, United Kingdom; ²⁸Department of Medicine, Rheumatology Unit, Karolinska Institutet, Stockholm, Sweden; ²⁹Rheumatology, Hairmyres Hospital, East Kilbride, United Kingdom; 30 Universidad del Pais Vasco, Servicio de Medicina Interna, Hospital de Cruces, Bizkaia, Spain; ³¹Medicine/Rheumatology, Emory University, Atlanta, GA, USA; ³²Abteilung Rheumatologie/Rehab, Kantonsspital Schaffhausen, Schaffhausen, Switzerland; 33 Department of Internal Medicine, Division of Rheumatology, Istanbul University, Istanbul, Turkey, ³⁴Division of Rheumatology, Allergy & Immunology, UCSD School of Medicine Centre for Innovative Therapy, La Jolla, CA, USA; ³⁵Medicine, Medical University of South Carolina, Charleston, SC, USA; ³⁶School of Sport, Health and Exercise Sciences, Bangor University, Bangor, United Kingdom; ³⁷Rheumatology, University of Manitoba, Winnipeg, MB, Canada; ³⁸Rheumatology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark; ³⁹Columbia University College of Physicians & Surgeons, New York, NY, USA; 40 Medicine, Division of Rheumatology, New York University School of Medicine, New York, NY, USA; 41 Medicine/Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL, USA; 42 Department of Autoimmune Diseases, CELLEX-IDIBAPS, Hospital Clínic, Barcelona, Barcelona, Spain; 43Clinical Epidemiology, Research Institute of the McGill University Health Centre, Montreal, QC, 10.1136/lupus-2016-000179.100 LUPUS 2016;**3**(suppl 1):A1-A80