Article Text

PDF

415 The association between world development indicators per country and gender ratio in patients with systemic lupus erythematosus: a big data approach analysis
  1. M Pérez de Lis Novo1,
  2. R Pérez-Álvarez2,
  3. B Kostov3,
  4. P Brito-Zerón4,
  5. M Gandía5,
  6. A Siso-Almirall6,
  7. D Superville7,
  8. Y Shoenfeld8,
  9. M Ramos-Casals9 and
  10. MA Khamashta10
  1. 1Hospital Juan Canalejo, Anesthesiology and Intensive Care, A Coruña, Spain
  2. 2Hospital Álvaro Cunqueiro, Internal Medicine- Department of Autoimmune Diseases., Vigo, Spain
  3. 3Primary Care Centre Les Corts- CAPSE, Institut d’Investigacions Biomèdiques August Pi i Sunyer IDIBAPS, Barcelona, Spain
  4. 4Josep Font Laboratory of Autoimmune Diseases- CELLEX-Institut d’Investigacions Biomèdiques August Pi i Sunyer IDIBAPS, Department of Autoimmune Diseases- ICMiD- Hospital Clínic, Barcelona, Spain
  5. 5Hospital Puerta del Mar, Rheumatology, Cádiz, Spain
  6. 6Primary Care Research Group- Institut d’Investigacions Biomèdiques August Pi i Sunyer IDIBAPS, Primary Care Centre Les Corts- CAPSE, Barcelona, Spain
  7. 7Massachusetts Institute of Technology, MIT, Cambridge- Massachusetts, USA
  8. 87Zabludowicz Centre for Autoimmune Diseases- Chaim Sheba Medical Center- Tel Hashomer- Israel, Incumbent of the Laura Schwarz-Kipp Chair for Research of Autoimmune Diseases- Sackler Faculty of Medicine- Tel-Aviv University, Tel-Aviv, Israel
  9. 9Josep Font Laboratory of Autoimmune Diseases- CELLEX-Institut d’Investigacions Biomèdiques August Pi i Sunyer IDIBAPS-, Department of Autoimmune Diseases- ICMiD- Hospital Clínic, Barcelona, Spain
  10. 10St Thomas’ Hospital- King’s College University, Lupus Research Unit- The Rayne Institute, London, UK

Abstract

Background and aims Systemic autoimmune diseases (SAD) are characterised by a wide spectrum of demographic patterns with respect to the ethnic differences, age at diagnosis and especially gender distribution. Studying the distribution of these diseases across geographic regions using a big data-driven approach may help obtain a more “high-definition resolution” of these complex diseases.

Methods We explored the potential of the Google search engine to collect and merge 133 SLE cohorts (>100 patients) reported in the Pubmed library. The country indicators are subclassified into 20 specific topics.Statistically-significant correlations were further corrected according to the Lasso statistical model (LC).

Results We found statistical correlations in the following areas: Education, Environment, Infrastructure, Economy and Growth, Health, Private sector, Public sector and Social Protection and Labour. A higher F:M ratio was found in countries who had a higher frequency of women in tertiary education/academic staff ,female legislators, higher% of CO2 emissions from electricity/heat, higher% of terrestrial and marine protected areas and of taxes. In contrast, a lower F:M ratio was found in countries who had a higher frequency of women in unemployment and countries with a higher out-of-pocket health expenditure for private healthcare

Conclusions There is a clear trend of association between the percentage of women diagnosed with SLE and some indicators of development of each country. The gap between women and men diagnosed with SLE is wider in countries with the highest frequencies of women working and women with high study degrees, and those countries with more taxes and a higher percentage of protected geographical areas.

Statistics from Altmetric.com

Request permissions

If you wish to reuse any or all of this article please use the link below which will take you to the Copyright Clearance Center’s RightsLink service. You will be able to get a quick price and instant permission to reuse the content in many different ways.