Abstract 102 Table 2 Comparision of the levels of reduced glutathione and lipid peroxidation in Kidney, liver, lung and spleen at 0 month, 6 month pristane treatment and after resveratrol treatment. Values are expressed as Mean±SEM.

		Kidney	Liver	Lung	Spleen
Reduced Glutathione (µmoles/mg protein)	0 month	4.53 ± 0.37	5.71 ± 0.46	9.67 ± 1.35	8.83 ± 2.10
	6 month	2.23 ± 0.37	2.03 ± 0.86	3.21 ± 0.99	4.91 ± 0.91
	Resveratrol	5.13 ± 0.57	5.45 ± 0.21	5.59 ± 0.1	9.88 ± 0.46
Lipid Peroxidation (μmoles MDA/mg protein)	0 month	1.35 ± 0.17	2.34 ± 0.5	1.58 ± 0.52	1.58 ± 0.27
	6 month	7.56 ± 0.78	10.62 ± 1.08	5.01 ± 0.53	6.27 ± 0.48
	Resveratrol	2.78 ± 0.16	4.22 ± 0.53	4.29 ± 0.84	3.74 ± 0.69

Methods Fifty-eight patients were enrolled at initiation of belimumab and followed longitudinally for up to 53 months. Surveillance outcomes included the SLE Disease Activity Index 2000 (SLEDAI-2K), 100 mm Visual Analogue Scales for Physician's Global Assessment (PGA), fatigue, pain and general health, and the Systemic Lupus International Collaborating Clinics/American College of Rheumatology Damage Index (SDI). Assessment of treatment response included the SLE responder index (SRI). B lymphocyte stimulator (BLyS) levels were determined using ELISA.

Results SLEDAI-2K (median baseline score: 8.0; IQR: 4.0–13.8), PGA and corticosteroid use decreased during therapy, and patients reported improvements on fatigue, pain, and general health (p<0.0001 for all). SDI scores remained stable (p=0.08). Patients with baseline SDI scores>1 showed decreased probability and prolonged time to attain SRI response (HR: 0.449; 95% CI: 0.208–0.967), as did current smokers compared with non-smokers (HR: 0.103; 95% CI: 0.025–0.427). In contrast, baseline BLyS levels≥1.2 ng/mL predicted increased probability and shorter time to attain SRI response (HR: 2.566; 95% CI: 1.222–5.387).

Conclusions Disease activity and corticosteroid usage decreased, patient-reported outcomes improved, and no significant organ damage was accrued during follow-up. Smoking and organ damage predicted reduced treatment efficacy. These findings might contribute to a better selection of patients who are likely to benefit from belimumab.

104

A MASS CYTOMETRY (CYTOF) APPROACH TO STUDY B CELL ALTERATIONS DURING BAFF BLOCKADE TREATMENT WITH BELIMUMAB IN SYSTEMIC LUPUS ERYTHEMATOSUS

¹I Parodis*, ¹D Ramsköld, ²L Tadepally, ²Y Chen, ¹A Zickert, ²J Mikes, ¹K Amara, ²A Achour, ²P Brodin, ¹I Gunnarsson, ¹V Malmström. ¹Karolinska Institutet, Department of Medicine- Rheumatology Unit, Stockholm, Sweden; ²Karolinska Institutet, Department of Medicine Solna- Science for Life Laboratory, Stockholm, Sweden

10.1136/lupus-2017-000215.104

Background and aims Belimumab is a monoclonal antibody that inhibits soluble B lymphocyte stimulator (BLyS, also known as BAFF), approved for the treatment of systemic lupus erythematosus (SLE). Here, we sought to identify B cell alterations during belimumab treatment.

Methods Twenty-three SLE patients treated with belimumab were enrolled. Peripheral blood mononuclear cells were collected and cryopreserved at treatment initiation and at regular follow-up visits for up to 3 years. The samples were simultaneously assayed using mass cytometry. Cell counts were adjusted for total lymphocyte counts.

Results CD20⁺ B cells decreased over time (p<0.0001). We observed a rapid reduction of naïve (CD19⁺CD20⁺Ig-D⁺IgM⁺CD27⁻) and age-associated B cells (CD19⁺CD20⁺CD11c⁺CD21⁻) already at the first follow-up visit (month 3), followed by a continuous decrease (p<0.0001 for both subsets), while double-negative memory B cells

A44 LUPUS 2017;**4**(Suppl 1):A1–A227

(CD19⁺CD20⁺IgD⁻CD27⁻) declined significantly first at month 6 (p=0.033) and pre-switching B cells (CD19⁺CD20⁺IgD⁺CD27⁺) showed a trend towards a decrease (p=0.052). Plasma cells (CD138⁺CD27⁺CD19⁺CD20⁻) and switched memory B cells (CD19⁺CD20⁺CD27⁺IgD⁻) remained stable during the study period, as did T cells and monocytes (p>0.2). Despite continuously decreasing SLE Disease Activity Index, immunological changes correlated with clinical improvements only during early time points (month 0–3). Interestingly, high baseline B cell counts were predictive of non-attaining Lupus Low Disease Activity State at month 24 (area under the ROC-curve: 0.95).

Conclusions B cell alterations betided in two distinct phases, a rapid early and a gradual late phase. Late clinical improvements might reflect preceding immunological changes, implying that early treatment evaluation and discontinuation might underestimate delayed improvements reflecting the late B cell changes.

105

TOLL-LIKE RECEPTOR 7-, BUT NOT TOLL-LIKE RECEPTOR 9-, MEDIATED INTERFERON-A PRODUCTION FROM PLASMACYTOID DENDRITIC CELLS IN PATIENTS WITH SYSTEMIC LUPUS ERYTHEMATOSUS

K Sakata*, S Nakayamada, Y Miyazaki, S Kubo, K Nakano, Y Tanaka. *University of Occupational and Environmental Health, The First Department of Internal Medicine, Kitakyushu, Japan*

10.1136/lupus-2017-000215.105

Background and aims Aberrant and persistent production of type I interferon (IFN) is known to play a pivotal role in the pathogenesis of systemic lupus erythematosus (SLE), and plasmacytoid dendritic cells (pDCs) are the major source of type I IFN upon toll-like receptor 7 (TLR7) and TLR9 stimulation. However the respective impacts of TLR7 and TLR9 responses on type I IFN production in SLE has not been addressed. To investigate the precise function of pDCs in SLE patients, we shed light upon the differential regulation of TLR7/9 responses during type I IFN production from pDCs.

Methods PBMCs from SLE patients and healthy controls were analysed in the presence of a TLR7 agonist loxoribine and a TLR9 agonist CpG2216. The IFN-α production in Lin-HLA-DR+CD123+CD11c- pDCs was detected by flow cytometry.

Results We demonstrated that TLR7-mediated IFN- α production were up-regulated and were positively correlated with disease activity, conversely, TLR9-mediated IFN- α production were down-regulated in SLE. The differential regulation of TLR7/9 responses of pDCs was not dependent on expression levels of TLR7/9. Furthermore, in vitro experiments revealed that up-regulation of TLR7 response was caused by pre-treatment with type I IFNs, conversely, down-regulation of TLR9 response was caused by pre-treatment with type II IFN.

Conclusions This is the first report demonstrated the differential regulation of TLR7- and TLR9- mediated IFN- α production from pDCs in SLE, namely, caused by priming effects of type I and type II IFNs. Taken together, TLR7-, but not TLR9-, mediated IFN- α production contributes the pathogenesis of SLE, and TLR7 could be a potential therapeutic target for SLE.

106

EFFECTS OF BELIMUMAB ON CORTICOSTEROID USE IN A PIVOTAL PHASE III, RANDOMISED, PLACEBO CONTROLLED STUDY IN SUBJECTS WITH SYSTEMIC LUPUS ERYTHEMATOSUS IN NORTH EAST ASIA

¹Y Tanaka*, ²D Bass, ²M Chu, ³S Egginton, ³B Ji, ⁴B Pobiner, ²D Roth, ⁵YW Song, ⁴A Thompson, ⁶F Zhang. ¹University of Occupational and Environmental Health, The First Department of Internal Medicine- School of Medicine, Kitakyushu, Japan; ²GSK, Collegeville, Pennsylvania, USA; ³GSK, Stockley Park, Uxbridge, UK; ⁴GSK, Raleigh Durham, North Carolina, USA; ⁵Seoul National University Hospital, Seoul, Seoul, Republic of Korea; ⁶Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China

10.1136/lupus-2017-000215.106

Background and aims Steroid reduction is an important treatment goal in systemic lupus erythematosus (SLE). The steroid-sparing effects of belimumab were investigated in subjects in North East Asia.

Methods This multicentre, 52 week study (1 13 750/NCT01345253) randomised (2:1) subjects (≥18 years) with SELENA-SLEDAI ³8 to intravenous belimumab 10 mg/kg or placebo every 28 days, plus standard SLE therapy. Multiple measures of steroid use (prednisone equivalent) were made, including a secondary endpoint of reduction in dose over 52 weeks among subjects receiving >7.5 mg/day at baseline

Abstract 106 Table 1 Prednisone dose over 52 weeks

All subjects (N=677)	Placebo (n=226)	Belimumab 10 mg/kg (n=451)	
Baseline prednisone dose (all subjects), mean (SD), mg/day	17.2 (10.82)	16.0 (10.66)	
Cumulative prednisone dose over 52 weeks (all subjects), median (25th, 75th percentile), mg*	4758.1 (3597.5, 6695.0)	4190.0 (3090.0, 5475.0)	
p-value ^b	0.0005		
Number of subjects with baseline prednisone dose >7.5 mg/day, n (%)	184 (81.4)	352 (78.0)	
Number of days that prednisone was reduced to ≤7.5 mg/day and/or by 50% from baseline over 52 weeks, median (25 th , 75 th percentile) ^c	0 (0, 172.0)	0 (0, 213.5)	
p-value ^b		0.0288	
Prednisone reduction by ≥25% from baseline to ≤7.5 mg/day during Weeks 40–52, n (%)°	20 (10.9)	55 (15.6)	
p-value ^d	0.0721		

*Daily dose imputed after dropout/treatment failure; brank ANCOVA; samong subjects with prednisone dose >7.5 mg/day at baseline; alogistic regression; ANCOVA, analysis of covariance; SD, standard deviation.

LUPUS 2017;**4**(Suppl 1):A1-A227