Skip to main content

Advertisement

Log in

Inhibiting matrix metalloproteinase-2 reduces protein release into coronary effluent from isolated rat hearts during ischemia-reperfusion

  • ORIGINAL CONTRIBUTION
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

Background

Previous studies have shown that the disruption of the coronary endothelium and the increase in its permeability during ischemia-reperfusion (I/R), are linked to matrix metalloproteinase-2 (MMP-2) activity. Studies from our group have shown that during I/R, activity of MMP-2 in the coronary effluent increases and this increase is associated with cardiac dysfunction, which in turn, can be prevented by MMP inhibitors. Therefore, we hypothesize that inhibiting MMPs reduces the MMP-2 dependent disruption of the coronary endothelium and subsequent protein release during I/R.

Methods

Isolated rat hearts were perfused in the Langendorff mode at a constant pressure and subjected to 15, 20 or 30 min no-flow ischemia followed by 30 min of reperfusion. The MMP inhibitors, o-phenanthroline (Phen, 100 µM) or doxycycline (Doxy, 30 µM) an inhibitors of MMPs, were added to the perfusion solution 10 min before ischemia and for the first 10 min of reperfusion. The coronary effluents were collected during perfusion for protein analysis. Creatine kinase was measured as an index of cellular damage. Endothelial integrity was assessed by measuring coronary flow and by measuring the levels of serotransferrin and interstitial albumin in the coronary effluent. Additionally, damage to the endothelium was assessed histologically by light microscopy analysis of the cellular structure of the myocardium. MMP-2 activity was measured by zymography in hearts subjected to 15, 20 and 30 min of ischemia without reperfusion.

Results

MMP-2 activity was increased in heart tissue at the end of ischemia and was correlated with duration of ischemia. The post-ischemia decrease in coronary flow, and the increase in the release of serotransferrin and albumin were attenuated by Phen. Edema (another indirect marker of endothelial damage) was observed in I/R heart and the edema was abolished in I/R heart treated with MMP inhibitors.

Conclusion

MMP inhibition not only reduces cardiac mechanical dysfunction but also reduces endothelial damage resulting from cardiac I/R injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Heleen M Oudemans-van Straaten, Angelique ME Spoelstra-de Man & Monique C de Waard

Abbreviations

I/R:

Ischemia-reperfusion

MMPs:

Matrix metalloproteinases

Phen:

o-Phenanthroline

Doxy:

Doxycycline

References

  1. Arrell DK, Neverova I, Fraser H, Marban E, Van Eyk JE (2001) Proteomic analysis of pharmacologically preconditioned cardiomyocytes reveals novel phosphorylation of myosin light chain 1. Circ Res 89:480–487

    Article  PubMed  CAS  Google Scholar 

  2. Arrell DK, Niederlander NJ, Perez-Terzic C, Chung S, Behfar A, Terzic A (2007) Pharmacoproteomics: advancing the efficacy and safety of regenerative therapeutics. Clin Pharmacol Therapeut 82:316–319

    Article  CAS  Google Scholar 

  3. Carden DL, Granger DN (2000) Pathophysiology of ischemia: reperfusion injury. J Pathol 190:255–266

    Article  PubMed  CAS  Google Scholar 

  4. Cheung PY, Sawicki G, Wozniak M, Wang W, Radomski MW, Schulz R (2000) Matrix metalloproteinase-2 contributes to ischemia-reperfusion injury in the heart. Circulation 101:1833–1839

    PubMed  CAS  Google Scholar 

  5. Corbett JM, Why HJ, Wheeler CH, Richardson P, Archard LC, Yacoub MH, Dunn JD (1998) Cardiac protein abnormalities in dilated cardiomyopathy detected by two-dimensional polyacrylamide gel electrophoresis. J Electrophoresis 19:2031–2042

    Article  CAS  Google Scholar 

  6. Dauber IM, Pluss WT, VanGrondelle A, Trow RS, Weil JV (1985) Specificity and sensitivity of noninvasive measurement of pulmonary vascular protein leak. J Appl Physiol 59:564–574

    PubMed  CAS  Google Scholar 

  7. Dejana E, Bazzoni G, Lampugnani MG (1999) Vascular endothelial (VE)-cadherin: only an intercellular glue? Exp Cell Res 252:13–19

    Article  PubMed  CAS  Google Scholar 

  8. Gallagher G, Menzie S, Huang Y, Jackson C, Hunyor SN (2007) Regional cardiac dysfunction is associated with specific alterations in inflammatory cytokines and matrix metalloproteinases after acute myocardial infarction in sheep. Basic Res Cardiol 102:63–72

    Article  PubMed  CAS  Google Scholar 

  9. Garcia SC, Pomblum V, Gams E, Langenbach MR, Schipke JD (2007) Independency of myocardial stunning of endothelial stunning? Basic Res Cardiol 102:359–7367

    Article  PubMed  CAS  Google Scholar 

  10. Gasche Y, Copin JC, Sugawara T, Fujimura M, Chan PH (2001) Matrix metalloproteinase inhibition prevents oxidative stress-associated blood-brain barrier disruption after transient focal cerebral ischemia. J Cereb Blood Flow Metab 21:1393–1400

    Article  PubMed  CAS  Google Scholar 

  11. Geissler HJ, Mehlhorn U, Laine GA, Allen S (2001) Myocardial fluid balance. Eur J Cardiothorac Surg 20:1220–1230

    Article  PubMed  Google Scholar 

  12. Grisham MB, Granger DN, Lefer DJ (1998) Modulation of leukocyte–endothelial interactions by reactive metabolites of oxygen and nitrogen: relevance to ischemic heart disease. Free Radic Biol Med 25:404–433

    Article  PubMed  CAS  Google Scholar 

  13. Gu Z, Kaul M, Yan B, Kridel SJ, Cui J, Strongin A, Smith JW, Liddington RC, Lipton SA (2002) S-Nitrosylation of matrix metalloproteinases: signaling pathway to neuronal cell death. Science 297:1186–1190

    Article  PubMed  CAS  Google Scholar 

  14. Hack CE, Zeerleder S (2001) The endothelium in sepsis: source of and a target for inflammation. Crit Care Med 29:21–27

    Article  Google Scholar 

  15. Harpers SJ, Bates DO (2003) Endothelial permeability in uremia. Kidney Int 63:41–44

    Article  Google Scholar 

  16. Heinke M, Wheeler C, Chang D, Einstein R, Drake-Holland A, Dunn M (1998) Protein changes observed in pacing induced heart failure using two-dimensional electrophoresis. Electrophoresis 19:2021–2030

    Article  PubMed  CAS  Google Scholar 

  17. Heinke M, Wheeler C, Yan J, Amin V, Chang D, Einstein R, Dunn MJ, dos Remedios CG (1999) Changes in myocardial protein expression in pacing-induced canine heart failure. Electrophoresis 20:2086–2093

    Article  PubMed  CAS  Google Scholar 

  18. Jager D, Jungblut PR, Muller-Werdan U (2002) Separation and identification of human heart proteins. J Chromatogr B Analyt Tech Biomed Life Sci 771:131–153

    Article  CAS  Google Scholar 

  19. Jiang L, Tsubakihara M, Heinke MY, Yao M, Dunn MJ, Phillips W, dos Remedios CG, Nosworthy NJ (2001) Heart failure and apoptosis: electrophoretic methods support data from micro- and macro-arrays. A critical review of genomics and proteomics. Proteomics 1:1481–1488

    Article  PubMed  CAS  Google Scholar 

  20. Lalu MM, Csont T, Schulz R (2004) Matrix metalloproteinase activities are altered in the heart and plasma during endotoxemia. Crit Care Med 32:1332–1337

    Article  PubMed  CAS  Google Scholar 

  21. Lalu MM, Pasini E, Schulze CJ, Ferrari-Vivaldi M, Ferrari-Vivaldi G, Bachetti T, Schulz R (2005) Ischaemia-reperfusion injury activates matrix metalloproteinases in the human heart. Eur Heart J 26:27–35

    Article  PubMed  CAS  Google Scholar 

  22. Lalu MM, Cena J, Chowdhury R, Lam A, Schulz R (2006) Matrix metalloproteinase contribute to endotoxin and interleukin-1β induced vascular dysfunction. Br J Pharmacol 149:31–42

    Article  PubMed  CAS  Google Scholar 

  23. Lang SC, Elsasser A, Scheler C, Vetter S, Tiefenbacher CP, Kubler W, Katus HA, Vogt AM (2006) Myocardial preconditioning and remote renal preconditioning-identifying a protective factor using proteomic methods? Basic Res Cardiol 101:149–158

    Article  PubMed  CAS  Google Scholar 

  24. Larsen M, Roepstorff P (2000) Mass spectrometric identification of proteins and characterization of their post-translational modifications in proteome analysis. Anal Chem 366:677–690

    Article  CAS  Google Scholar 

  25. Lyngbaek S, Schneider M, Hansen JL, Sheikh SP (2007) Cardiac regeneration by resident stem and progenitor cells in the adult heart. Basic Res Cardiol 102:101–114

    Article  PubMed  Google Scholar 

  26. McCarty MF (2004) Vascular endothelium is the organ chiefly responsible for the catabolism of plasma asymmetric dimethylarginine—an explanation for the elevation of plasma ADMA in disorders characterized by endothelial dysfunction. Med Hypotheses 63:699–708

    Article  PubMed  CAS  Google Scholar 

  27. Okamoto T, Akaike T, Sawa T, Miyamoto Y, van der Vliet A (2001) Activation of matrix metalloproteinases by peroxynitrite-induced protein S-glutathiolation via disulfide S-oxide formation. J Biol Chem 276:29596–29602

    Article  PubMed  CAS  Google Scholar 

  28. Penna C, Rastaldo R, Mancardi D, Raimondo S, Cappello S, Gattullo D, Losano G, Pagliaro P (2006) Post-conditioning induced cardioprotection requires signaling through a redox-sensitive mechanism, mitochondrial ATP-sensitive K+ channel and protein kinase C activation. Basic Res Cardiol 101:180–189

    Article  PubMed  CAS  Google Scholar 

  29. Perkins DN, Pappin DJ, Creasy DM, Cottrell JS (1999) Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20:3551–3567

    Article  PubMed  CAS  Google Scholar 

  30. Sawicki G, Salas E, Murat J, Miszta-Lane H, Radomski MW (1997) Release of gelatinase A during platelet activation mediates aggregation. Nature 386:616–619

    Article  PubMed  CAS  Google Scholar 

  31. Sawicki G, Dakour J, Morrish DW (2003) Functional proteomics of neurokinin B in the placenta indicates a novel role in regulating cytotrophoblast antioxidant defences. Proteomics 3:2044–2051

    Article  PubMed  CAS  Google Scholar 

  32. Sawicki G, Leon H, Sawicka J, Sariahmetoglu M, Schulze CJ, Scott PG, Szczesna-Cordary D, Schulz R (2005) Degradation of myosin light chain in isolated rat hearts subjected to ischemia-reperfusion injury, a new intracellular target for matrix metalloproteinase-2. Circulation 112:544–552

    Article  PubMed  CAS  Google Scholar 

  33. Sawicki G, Udenberg T, Lalu M, Schulz R (2006) A Proteomic approach for the investigation of myocardial protein changes in sepsis. J Mol Cell Cardiol 40:899

    Article  Google Scholar 

  34. Schulz R (2007) Targets of matrix metalloproteinase-2 in cardiac disease: rationale and therapeutic approaches. Annu Rev Pharmacol Toxicol 47:211–242

    Article  PubMed  CAS  Google Scholar 

  35. Schwertz H, Langin T, Platsch H, Richert J, Bomm S, Schmidt M, Hillen H, Blaschke G, Meyer J, Darius H, Buerke M (2002) Two-dimensional analysis of myocardial protein expression following myocardial ischemia and reperfusion in rabbits. Proteomics 2:988–995

    Article  PubMed  CAS  Google Scholar 

  36. Seal JB, Gewertz BL (2005) Vascular dysfunction in ischemia-reperfusion injury. Ann Vasc Surg 19:572–584

    Article  PubMed  Google Scholar 

  37. Soccal PM, Gasche Y, Pache JC, Schneuwly O, Slosman DO, Morel DR, Spiliopoulos A, Suter PM, Nicod LP (2000) Matrix metalloproteinases correlate with alveolar-capillary permeability alteration in lung ischemia-reperfusion injury. Transplantation 70:998–1005

    Article  PubMed  CAS  Google Scholar 

  38. Spinale FG (2007) Myocardial matrix remodeling and the matrix metalloproteinases: influence on cardiac form and function. Physiol Rev 87:1285–342

    Article  PubMed  CAS  Google Scholar 

  39. Szocs K (2004) Endothelial dysfunction and reactive oxygen species production in ischemia/reperfusion and nitrate tolerance. Gen Physiol Biophys 23:265–295

    PubMed  CAS  Google Scholar 

  40. Wang W, Sawicki G, Schulz R (2002) Peroxynitrite-induced myocardial injury is mediated through matrix metalloproteinase-2. Cardiovasc Res 53:165–174

    Article  PubMed  CAS  Google Scholar 

  41. Wang W, Schulze CJ, Suarez-Pinzon WL, Dyck JR, Sawicki G, Schulz R (2002) Intracellular action of matrix metalloproteinase-2 accounts for acute myocardial ischemia and reperfusion injury. Circulation 106:1543–1549

    Article  PubMed  CAS  Google Scholar 

  42. Wu MH (2005) Endothelial focal adhesions and barrier function. J Physiol 569:359–366

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. J. S Richardson for help with manuscript preparation. This work was supported by grants from Canadian Institutes of Health Research and the Heart and Stroke Foundation of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Grzegorz Sawicki.

Additional information

Returned for 1. Revision: 13 December 2007 1. Revision received: 17 March 2008

Returned for 2. Revision: 3 April 2008 2. Revision received: 8 April 2008

J. Fert-Bober and H. Leon contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fert-Bober, J., Leon, H., Sawicka, J. et al. Inhibiting matrix metalloproteinase-2 reduces protein release into coronary effluent from isolated rat hearts during ischemia-reperfusion. Basic Res Cardiol 103, 431–443 (2008). https://doi.org/10.1007/s00395-008-0727-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00395-008-0727-y

Keywords

Navigation