Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

ICOS is critical for T helper cell–mediated lung mucosal inflammatory responses

Abstract

We examined the requirement for and cooperation between CD28 and inducible costimulator (ICOS) in effective T helper (TH) cell responses in vivo. We found that both CD28 and ICOS were critical in determining the outcome of an immune response; cytolytic T lymphocyte–associated antigen 4–immunoglobulin (CTLA-4–Ig), ICOS-Ig and/or a neutralizing ICOS monoclonal antibody attenuated T cell expansion, TH2 cytokine production and eosinophilic inflammation. CD28-dependent signaling was essential during priming, whereas ICOS–B7RP-1 regulated TH effector responses, and the up-regulation of chemokine receptors that determine T cell migration. Our data suggests a scenario whereby both molecules regulate the outcome of the immune response but play separate key roles: CD28 primes T cells and ICOS regulates effector responses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Characterization of the mAbs to ICOS.
Figure 2: Antigen-induced cytokine production after ICOS neutralization.
Figure 3: ICOS expression during allergic lung inflammation.
Figure 4: ICOS expression in the lung and peribronchiolar lymph nodes during allergic lung inflammation.
Figure 5: OVA-induced BAL leukocyte accumulation and AHR after ICOS neutralization during allergic lung inflammation.
Figure 6: OVA-induced BAL leukocyte accumulation and AHR after ICOS neutralization at different time-points during allergic airway disease.
Figure 7: OVA-induced cytokine production in the BAL fluid after ICOS neutralization during allergic airway disease.
Figure 8: Regulation of chemokine receptor expression in the lymph nodes for ICOS.
Figure 9: OVA-induced IgE production after ICOS neutralization and treatment with CTLA-4–Ig.

Similar content being viewed by others

References

  1. Schwartz, R. H. A cell culture model for T lymphocyte clonal anergy. Science 4961, 1349–1356 (1990).

    Article  Google Scholar 

  2. Coyle, A. J. & Gutierrez-Ramos, J. C. The expanding B7 superfamily: Increasing complexity in costimulatory signals regulating T cell function. Nature Immunol . 2, 1–7 (2001).

    Article  Google Scholar 

  3. Harding, F. A., McArthur, J. G., Gross, J. A., Raulet, D. H. & Allison, J. P. CD28-mediated signalling co-stimulates murine T cells and prevents induction of anergy in T-cell clones. Nature 6370, 607–609 (1992).

    Article  Google Scholar 

  4. Jenkins, M. K., Taylor, P. S., Norton, S. D. & Urdahl, K. B. CD28 delivers a costimulatory signal involved in antigen-specific IL-2 production by human T cells. J. Immunol. 8, 2461–2466 (1991).

    Google Scholar 

  5. Lucas, P. J., Negishi, I., Nakayama, K., Fields, L. E. & Loh, D. Y. Naive CD28-deficient T cells can initiate but not sustain an in vitro antigen-specific immune response. J. Immunol. 154, 5757–5768 (1997).

    Google Scholar 

  6. Garside, P. et al. Visualization of specific B and T lymphocyte interactions in the lymph node. Science 281, 96–99 (1998).

    Article  CAS  Google Scholar 

  7. Walunas, T. L. et al. CTLA-4 can function as a negative regulator of T cell activation. Immunity 1, 405–413 (1994).

    Article  CAS  Google Scholar 

  8. Tivol, E. A. et al. Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4. Immunity 3, 541–547 (1995).

    Article  CAS  Google Scholar 

  9. Hutloff, A. et al. ICOS is an inducible T-cell co-stimulator structurally and functionally related to CD28. Nature 6716, 263–267 (1999).

    Article  Google Scholar 

  10. Coyle, A. J. J. et al. The CD28-related molecule ICOS is required for effective T cell-dependent immune responses. Immunity 1, 95–105 (2000).

    Article  Google Scholar 

  11. Yoshinaga, S. K. et al. T-cell co-stimulation through B7RP-1 and ICOS. Nature 402, 827–832 (1999).

    Article  CAS  Google Scholar 

  12. Swallow, M. M., Wallin, J. J. & Sha, W. C. B7h, a novel costimulatory homolog of B7.1 and B7.2, is induced by TNF-α. Immunity 11, 423–432 (1999).

    Article  CAS  Google Scholar 

  13. Rulifson, I. C., Sperling, A. I., Fields, P. E., Fitch, F. W. & Bluestone, J. A. CD28 costimulation promotes the production of Th2 cytokines. J. Immunol. 15, 658–665 (1997)

    Google Scholar 

  14. Dong, C. et al. ICOS costimulatory receptor is essential for T-cell activation and function. Nature 409, 97–101 (2001).

    Article  CAS  Google Scholar 

  15. McAdam, A. J., Greenwald, R. J., Levin, M. A., Freeman, G. J. & Sharpe, A. H. ICOS is critical for CD40 mediated antibody class switching. Nature 409, 102–105 (2001).

    Article  CAS  Google Scholar 

  16. Tafuri, A. et al. Essential role of ICOS in effective helper T cell responses. Nature 409, 105–109 (2001).

    Article  CAS  Google Scholar 

  17. Baggiolini, M. Chemokines and leukocyte traffic. Nature 392, 565–568 (1998).

    Article  CAS  Google Scholar 

  18. Sallusto, F., Lenig, D., Mackay, C. R. & Lanzavecchia, A. Flexible programs of chemokine receptor expression on human polarized T helper 1 and 2 lymphocytes. J. Exp. Med. 187, 875–883 (1998).

    Article  CAS  Google Scholar 

  19. Bonecchi, R. et al. Differential expression of chemokine receptors and chemotactic responsiveness of type 1 T helper cells (Th1s) and Th2s. J. Exp. Med. 187, 129–134 (1998).

    Article  CAS  Google Scholar 

  20. Sallusto, F., Mackay, C. R. & Lanzavecchia, A. Selective expression of the eotaxin receptor CCR3 by human T helper 2 cells. Science 277, 2005–2007 (1998).

    Article  Google Scholar 

  21. Shahinian, A. et al. Differential T cell costimulatory requirements in CD28-deficient mice. Science 261 609–612 (1993).

    Article  CAS  Google Scholar 

  22. Tada, Y. et al. CD28-deficient mice are highly resistant to collagen-induced arthritis. J. Immunol. 162, 203–208 (1999).

    CAS  PubMed  Google Scholar 

  23. Girvin, A. M. et al. A critical role for B7/CD28 costimulation in experimental autoimmune encephalomyelitis: a comparative study using costimulatory molecule-deficient mice and monoclonal antibody blockade. J. Immunol. 164, 136–143 (2000).

    Article  CAS  Google Scholar 

  24. Mathur, M. et al. CD28 interactions with either CD80 or CD86 are sufficient to induce allergic airway inflammation in mice. Am. J. Respir. Cell Mol. Biol. 21, 498–509 (1999).

    Article  CAS  Google Scholar 

  25. Linsley, P.S. et al. Immunosuppression in vivo by a soluble form of the CTLA-4 T cell activation molecule. Science 257, 792–795 (1992).

    Article  CAS  Google Scholar 

  26. Borriello, F. et al. B7–1 and B7-2 have overlapping, critical roles in immunoglobulin class switching and germinal center formation. Immunity 6, 303–313 (1997).

    Article  CAS  Google Scholar 

  27. Tang, A., Judge, T. A., Nickoloff, B. J. & Turka, L. A. Suppression of murine allergic contact dermatitis by CTLA-4-Ig. Tolerance induction of Th2 responses requires additional blockade of CD40-ligand. J. Immunol. 1, 117–125 (1996).

    Google Scholar 

  28. Gause, W. C. et al. polygyrus: B7-independence of the secondary type 2 response. Exp. Parasitol. 84, 264–273 (1996).

    Article  Google Scholar 

  29. McAdam, A. J. et al. Mouse inducible costimulatory molecule (ICOS) expression is enhanced by CD28 costimulation and regulates differentiation of CD4(+) T cells. J. Immunol. 165, 5035–5040 (2000).

    Article  CAS  Google Scholar 

  30. Corry, D. B., Reiner, S. L., Linsley, P. S. & Locksley, R. M. Differential effects of blockade of CD28-B7 on the development of Th1 or Th2 effector cells in experimental leishmaniasis. J. Immunol. 9, 4142–4148 (1994).

    Google Scholar 

  31. Lenschow, D. J. et al. CD28/B7 regulation of TH1 and TH2 subsets in the development of autoimmune diabetes. Immunity 3, 285–293 (1996).

    Article  Google Scholar 

  32. Gonzalo, J. A., Delaney, T., Corcoran, J., Gutierrez-Ramos, J. C. & Coyle, A. J. Complimentary and unique signals delivered by ICOS and CD28 regulate T cell effector function. J. Immunol. 166, 1–5 (2001).

    Article  CAS  Google Scholar 

  33. Rottman, J. B. et al. The costimulatory molecule ICOS plays an important role in central nervous system demyelination. Nature Immunol. 2, 605–611 (2001).

    Article  CAS  Google Scholar 

  34. Ozkaynak, E. et al. Importance of ICOS–B7RP-1 costimulation in acute and chronic allograft rejection. Nature Immunol. 2, 591–596 (2001).

    Article  CAS  Google Scholar 

  35. Gonzalo, J. A. et al. The coordinated action of CC chemokines in the lung orchestrates allergic inflammation and airway hyperresponsiveness. J. Exp. Med. 188, 157–167 (1998).

    Article  CAS  Google Scholar 

  36. Gonzalo, J. A. et al. The expression of eotaxin parallels eosinophil accumulation and is not restricted to Th2 type response in the lung. Immunity 4, 1–14 (1996).

    Article  CAS  Google Scholar 

  37. Coyle, A. J., Lloyd, C. M. & Gutierrez-Ramos, J. C. Biotherapeutic targets for the treatment of allergic airway disease. Am. J. Respir. Crit. Care. Med. 162, 179–184 (2000).

    Article  Google Scholar 

  38. Tsuyuki, S., Tsuyuki, J., Einsle, K., Kopf, M. & Coyle, A. J. Costimulation through B7–2 (CD86) is required for the induction of a lung mucosal T helper cell 2 (TH2) immune response and altered airway responsiveness. J. Exp. Med. 185, 1671–1679 (1997).

    Article  CAS  Google Scholar 

  39. Keane-Myers, A., Gause, W. C., Linsley, P. S., Chen, S. J. & Wills-Karp, M. B7-CD28/CTLA-4 costimulatory pathways are required for the development of T helper cell 2-mediated allergic airway responses to inhaled antigens. J. Immunol . 158, 2042–2049 (1997).

    CAS  PubMed  Google Scholar 

  40. Schweitzer, A. N. & Sharpe, A. H. Studies using antigen-presenting cells lacking expression of both B7–1 (CD80) and B7-2 (CD86) show distinct requirements for B7 molecules during priming versus restimulation of Th2 but not Th1 cytokine production. J. Immunol. 6, 2762–2771 (1998).

    Google Scholar 

  41. London, C. A., Lodge, M. P. & Abbas, A. K. Functional responses and costimulator dependence of memory CD4+ T cells. J. Immunol. 164, 265–272 (2000).

    Article  CAS  Google Scholar 

  42. Schaerli, P. et al. CXC chemokine receptor 5 expression defines follicular homing T cells with B cell helper function. J. Exp. Med. 192, 1553–1562 (2000).

    Article  Google Scholar 

  43. Breitfeld, D. et al. Follicular B helper T cells express CXC chemokine receptor 5, localize to B cell follicles, and support immunoglobulin production. J. Exp. Med. 192, 1545–1552 (2000).

    Article  CAS  Google Scholar 

  44. Mackay, C. R. Follicular homing T helper (Th) cells and the TH1/TH2 paradigm. J. Exp. Med. 192, 31–34 (2000).

    Article  Google Scholar 

  45. Sallusto, F., Lenig, D., Forster, R., Lipp, M. & Lanzavecchia, A. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 401, 708–712 (1999).

    Article  CAS  Google Scholar 

  46. Kopf, M. et al. Inducible costimulator protein (ICOS) controls T helper cell subset polarization after virus and parasite infection. J. Exp. Med. 192, 111–117 (2000).

    Article  Google Scholar 

  47. Walker, L.S. et al. Compromised OX40 function in CD28-deficient mice is linked with failure to develop CXC chemokine receptor 5-positive CD4 cells and germinal centers. J. Exp. Med. 190, 1115–1122 (1999).

    Article  CAS  Google Scholar 

  48. Bretscher, P. A. A two-step, two-signal model for the primary activation of precursor helper T cells. Proc. Natl Acad. Sci. USA 96, 185–190 (1999).

    Article  CAS  Google Scholar 

  49. Lloyd, C. M. et al. CC chemokine receptor (CCR)3/eotaxin is followed by CCR4/monocyte-derived chemokine in mediating pulmonary T helper lymphocyte type 2 recruitment after serial antigen challenge in vivo. J. Exp. Med. 191, 265–274 (2000).

    Article  CAS  Google Scholar 

  50. Gonzalo, J. A. et al. Mouse monocyte-derived chemokine is involved in airway hyperreactivity and lung inflammation. J. Immunol. 163, 403–411 (1999).

    CAS  PubMed  Google Scholar 

  51. Chensue, S. W. et al. Aberrant in vivo T helper type 2 cell response and impaired eosinophil recruitment in cc chemokine receptor 8 knockout mice. J. Exp. Med. 193, 573–584 (2001).

    Article  CAS  Google Scholar 

  52. Murphy, K.M. et al. Induction by antigen of intrathymic apoptosis of CD4+CD8+TCRlo thymocytes in vivo. Science 21, 1720–1723 (1990).

    Article  Google Scholar 

Download references

Acknowledgements

We thank K. McDonald for purification of ICOS-Ig, C. Groves for advice on FACS analysis and S. Manning for his contributions to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony J. Coyle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gonzalo, J., Tian, J., Delaney, T. et al. ICOS is critical for T helper cell–mediated lung mucosal inflammatory responses. Nat Immunol 2, 597–604 (2001). https://doi.org/10.1038/89739

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/89739

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing