Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cellular mechanisms governing cross-presentation of exogenous antigens

Abstract

The recent discovery of fusion of endoplasmic reticulum membrane with nascent phagosomes suggests that this peripheral compartment in macrophages and dendritic cells may serve as an organelle optimized for major histocompatibility complex (MHC) class I–restricted cross-presentation of exogenous antigens. The process allows intersection of the endosomal system with the endoplasmic reticulum, the classical site of MHC class I peptide loading, and may reconcile the seemingly conflicting evidence indicating both of these sites are crucial in cross-presentation. Here we discuss the potential mechanisms involved in loading exogenous antigens onto MHC class I molecules and the implications of this new evidence for the in vivo function of dendritic cells.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: MHC class I peptide-loading complex.
Figure 2: Sec61p, the probable gateway from the ER to the cytosol used in the degradation of misfolded glycoproteins, and the peptide-loading complex are recruited to phagosomes by ER-mediated phagocytosis.
Figure 3: Two models of cross-presentation.

Similar content being viewed by others

References

  1. Lankat-Buttgereit, B. & Tampe, R. The transporter associated with antigen processing: function and implications in human diseases. Physiol. Rev. 82, 187–204 (2002).

    Article  CAS  Google Scholar 

  2. Serwold, T., Gonzalez, F., Kim, J., Jacob, R. & Shastri, N. ERAAP customizes peptides for MHC class I molecules in the endoplasmic reticulum. Nature 419, 480–483 (2002).

    Article  CAS  Google Scholar 

  3. York, I.A. et al. The ER aminopeptidase ERAP1 enhances or limits antigen presentation by trimming epitopes to 8-9 residues. Nat. Immunol. 3, 1177–1184 (2002).

    Article  CAS  Google Scholar 

  4. Rock, K.L., York, I.A. & Goldberg, A.L. Post-proteasomal antigen processing for major histocompatibility complex class I presentation. Nat. Immunol. 5, 670–677 (2004).

    Article  CAS  Google Scholar 

  5. Kloetzel, P.-M. Generation of major histocompatibility complex class I antigens: functional interplay between proteasomes and TPPII. Nat. Immunol. 5, 661–669 (2004).

    Article  CAS  Google Scholar 

  6. Radcliffe, C.M. et al. Identification of specific glycoforms of major histocompatibility complex class I heavy chains suggests that class I peptide loading is an adaptation of the quality control pathway involving calreticulin and ERp57. J. Biol. Chem. 277, 46415–45423 (2002).

    Article  CAS  Google Scholar 

  7. Dick, T.P., Bangia, N., Peaper, D.R. & Cresswell, P. Disulfide bond isomerization and the assembly of MHC class I-peptide complexes. Immunity 16, 87–98 (2002).

    Article  CAS  Google Scholar 

  8. Williams, A.P., Peh, C.A., Purcell, A.W., McCluskey, J. & Elliott, T. Optimization of the MHC class I peptide cargo is dependent on tapasin. Immunity 16, 509–520 (2002).

    Article  CAS  Google Scholar 

  9. Zarling, A.L. et al. Tapasin is a facilitator, not an editor, of class I MHC peptide binding. J. Immunol. 171, 5287–5295 (2003).

    Article  CAS  Google Scholar 

  10. Koller, B.H., Marrack, P., Kappler, J.W. & Smithies, O. Normal development of mice deficient in β2M, MHC class I proteins, and CD8+ T cells. Science 248, 1227–1230 (1990).

    Article  CAS  Google Scholar 

  11. Garbi, N. et al. Impaired immune responses and altered peptide repertoire in tapasin-deficient mice. Nat. Immunol. 1, 234–238 (2000).

    Article  CAS  Google Scholar 

  12. Grandea, A.G., 3rd et al. Impaired assembly yet normal trafficking of MHC class I molecules in Tapasin mutant mice. Immunity 13, 213–222 (2000).

    Article  CAS  Google Scholar 

  13. Lehner, P.J., Surman, M.J. & Cresswell, P. Soluble tapasin restores MHC class I expression and function in the tapasin-negative cell line. 220. Immunity 8, 221–231 (1998).

    Article  CAS  Google Scholar 

  14. Gao, B. et al. Assembly and antigen-presenting function of MHC class I molecules in cells lacking the ER chaperone calreticulin. Immunity 16, 99–109 (2002).

    Article  CAS  Google Scholar 

  15. Hombach, J., Pircher, H., Tonegawa, S. & Zinkernagel, R.M. Strictly transporter of antigen presentation (TAP)-dependent presentation of an immunodominant cytotoxic T lymphocyte epitope in the signal sequence of a virus protein. J. Exp. Med. 182, 1615–1619 (1995).

    Article  CAS  Google Scholar 

  16. Spies, T. & DeMars, R. Restored expression of major histocompatibility class I molecules by gene transfer of a putative peptide transporter. Nature 351, 323–324 (1991).

    Article  CAS  Google Scholar 

  17. Momburg, F. & Tan, P. Tapasin-the keystone of the loading complex optimizing peptide binding by MHC class I molecules in the endoplasmic reticulum. Mol. Immunol. 39, 217–233 (2002).

    Article  CAS  Google Scholar 

  18. Mellman, I. & Steinman, R.M. Dendritic cells: specialized and regulated antigen processing machines. Cell 106, 255–258 (2001).

    Article  CAS  Google Scholar 

  19. Sigal, L.J., Crotty, S., Andino, R. & Rock, K.L. Cytotoxic T-cell immunity to virus-infected non-haematopoietic cells requires presentation of exogenous antigen. Nature 398, 77–80 (1999).

    Article  CAS  Google Scholar 

  20. Mueller, S.N., Jones, C.M., Smith, C.M., Heath, W.R. & Carbone, F.R. Rapid cytotoxic T lymphocyte activation occurs in the draining lymph nodes after cutaneous herpes simplex virus infection as a result of early antigen presentation and not the presence of virus. J. Exp. Med. 195, 651–656 (2002).

    Article  CAS  Google Scholar 

  21. Kaleab, B. et al. Mycobacterial-induced cytotoxic T cells as well as nonspecific killer cells derived from healthy individuals and leprosy patients. Eur. J. Immunol. 20, 2651–2659 (1990).

    Article  CAS  Google Scholar 

  22. Szalay, G., Hess, J. & Kaufmann, S.H. Presentation of Listeria monocytogenes antigens by major histocompatibility complex class I molecules to CD8 cytotoxic T lymphocytes independent of listeriolysin secretion and virulence. Eur. J. Immunol. 24, 1471–1477 (1994).

    Article  CAS  Google Scholar 

  23. Romero, P. et al. Cloned cytotoxic T cells recognize an epitope in the circumsporozoite protein and protect against malaria. Nature 341, 323–326 (1989).

    Article  CAS  Google Scholar 

  24. da Conceicao-Silva, F., Perlaza, B.L., Louis, J.A. & Romero, P. Leishmania major infection in mice primes for specific major histocompatibility complex class I-restricted CD8+ cytotoxic T cell responses. Eur. J. Immunol. 24, 2813–2817 (1994).

    Article  CAS  Google Scholar 

  25. Jones, C.A. et al. Herpes simplex virus type 2 induces rapid cell death and functional impairment of murine dendritic cells in vitro. J. Virol. 77, 11139–11149 (2003).

    Article  CAS  Google Scholar 

  26. Gredmark, S. & Soderberg-Naucler, C. Human cytomegalovirus inhibits differentiation of monocytes into dendritic cells with the consequence of depressed immunological functions. J. Virol. 77, 10943–10956 (2003).

    Article  CAS  Google Scholar 

  27. Bevan, M.J. Cross-priming for a secondary cytotoxic response to minor H antigens with H-2 congenic cells which do not cross-react in the cytotoxic assay. J. Exp. Med. 143, 1283–1288 (1976).

    Article  CAS  Google Scholar 

  28. Bevan, M.J. Minor H antigens introduced on H-2 different stimulating cells cross-react at the cytotoxic T cell level during in vivo priming. J. Immunol. 117, 2233–2238 (1976).

    CAS  PubMed  Google Scholar 

  29. den Haan, J.M., Lehar, S.M. & Bevan, M.J. CD8+ but not CD8 dendritic cells cross-prime cytotoxic T cells in vivo. J. Exp. Med. 192, 1685–1696 (2000).

    Article  CAS  Google Scholar 

  30. Pooley, J.L., Heath, W.R. & Shortman, K. Cutting edge: intravenous soluble antigen is presented to CD4 T cells by CD8 dendritic cells, but cross-presented to CD8 T cells by CD8+ dendritic cells. J. Immunol. 166, 5327–5330 (2001).

    Article  CAS  Google Scholar 

  31. Smith, C.M. et al. Cutting edge: conventional CD8α+ dendritic cells are preferentially involved in CTL priming after footpad infection with herpes simplex virus-1. J. Immunol. 170, 4437–4440 (2003).

    Article  CAS  Google Scholar 

  32. Reis e Sousa, C. & Germain, R.N. Major histocompatibility complex class I presentation of peptides derived from soluble exogenous antigen by a subset of cells engaged in phagocytosis. J. Exp. Med. 182, 841–851 (1995).

    Article  CAS  Google Scholar 

  33. Rock, K.L. A new foreign policy: MHC class I molecules monitor the outside world. Immunol. Today 17, 131–137 (1996).

    Article  CAS  Google Scholar 

  34. Harding, C.V. & Song, R. Phagocytic processing of exogenous particulate antigens by macrophages for presentation by class I MHC molecules. J. Immunol. 153, 4925–4933 (1994).

    CAS  PubMed  Google Scholar 

  35. Kovacsovics-Bankowski, M., Clark, K., Benacerraf, B. & Rock, K.L. Efficient major histocompatibility complex class I presentation of exogenous antigen upon phagocytosis by macrophages. Proc. Natl. Acad. Sci. USA 90, 4942–4946 (1993).

    Article  CAS  Google Scholar 

  36. Fonteneau, J.F. et al. Characterization of the MHC class I cross-presentation pathway for cell-associated antigens by human dendritic cells. Blood 102, 4448–4455 (2003).

    Article  CAS  Google Scholar 

  37. Steinman, R.M., Inaba, K., Turley, S., Pierre, P. & Mellman, I. Antigen capture, processing, and presentation by dendritic cells: recent cell biological studies. Hum. Immunol. 60, 562–567 (1999).

    Article  CAS  Google Scholar 

  38. Chefalo, P.J. & Harding, C.V. Processing of exogenous antigens for presentation by class I MHC molecules involves post-Golgi peptide exchange influenced by peptide-MHC complex stability and acidic pH. J. Immunol. 167, 1274–1282 (2001).

    Article  CAS  Google Scholar 

  39. Hewitt, E.W. et al. Ubiquitylation of MHC class I by the K3 viral protein signals internalization and TSG101-dependent degradation. EMBO J. 21, 2418–2429 (2002).

    Article  CAS  Google Scholar 

  40. Kleijmeer, M.J. et al. Antigen loading of MHC class I molecules in the endocytic tract. Traffic 2, 124–137 (2001).

    Article  CAS  Google Scholar 

  41. Clayton, A. et al. Analysis of antigen presenting cell derived exosomes, based on immuno-magnetic isolation and flow cytometry. J. Immunol. Methods 247, 163–174 (2001).

    Article  CAS  Google Scholar 

  42. Chefalo, P.J., Grandea, A.G. 3rd, Van Kaer, L. & Harding, C.V. Tapasin−/− and TAP1−/− macrophages are deficient in vacuolar alternate class I MHC (MHC-I) processing due to decreased MHC-I stability at phagolysosomal pH. J. Immunol. 170, 5825–5833 (2003).

    Article  CAS  Google Scholar 

  43. Kovacsovics-Bankowski, M. & Rock, K.L. A phagosome-to-cytosol pathway for exogenous antigens presented on MHC class I molecules. Science 267, 243–246 (1995).

    Article  CAS  Google Scholar 

  44. Norbury, C.C., Hewlett, L.J., Prescott, A.R., Shastri, N. & Watts, C. Class I MHC presentation of exogenous soluble antigen via macropinocytosis in bone marrow macrophages. Immunity 3, 783–791 (1995).

    Article  CAS  Google Scholar 

  45. Rock, K.L., Rothstein, L., Fleischacker, C. & Gamble, S. Inhibition of class I and class II MHC-restricted antigen presentation by cytotoxic T lymphocytes specific for an exogenous antigen. J. Immunol. 148, 3028–3033 (1992).

    CAS  PubMed  Google Scholar 

  46. Rodriguez, A., Regnault, A., Kleijmeer, M., Ricciardi-Castagnoli, P. & Amigorena, S. Selective transport of internalized antigens to the cytosol for MHC class I presentation in dendritic cells. Nat. Cell Biol. 1, 362–368 (1999).

    Article  CAS  Google Scholar 

  47. Wiertz, E.J. et al. Sec61-mediated transfer of a membrane protein from the endoplasmic reticulum to the proteasome for destruction. Nature 384, 432–438 (1996).

    Article  CAS  Google Scholar 

  48. Pilon, M., Schekman, R. & Romisch, K. Sec61p mediates export of a misfolded secretory protein from the endoplasmic reticulum to the cytosol for degradation. EMBO J 16, 4540–4548 (1997).

    Article  CAS  Google Scholar 

  49. McCracken, A.A. & Brodsky, J.L. Evolving questions and paradigm shifts in endoplasmic-reticulum-associated degradation (ERAD). Bioessays 25, 868–877 (2003).

    Article  CAS  Google Scholar 

  50. Desjardins, M., Huber, L.A., Parton, R.G. & Griffiths, G. Biogenesis of phagolysosomes proceeds through a sequential series of interactions with the endocytic apparatus. J. Cell Biol. 124, 677–688 (1994).

    Article  CAS  Google Scholar 

  51. Gagnon, E. et al. Endoplasmic reticulum-mediated phagocytosis is a mechanism of entry into macrophages. Cell 110, 119–131 (2002).

    Article  CAS  Google Scholar 

  52. Muller-Taubenberger, A. et al. Calreticulin and calnexin in the endoplasmic reticulum are important for phagocytosis. EMBO J. 20, 6772–6782 (2001).

    Article  CAS  Google Scholar 

  53. Van den Berg, B. et al. X-ray structure of a protein-conducting channel. Nature 427, 36–44 (2004).

    Article  CAS  Google Scholar 

  54. Hemmelder, M.H., de Jong, P.E. & de Zeeuw, D. A comparison of analytic procedures for measurement of fractional dextran clearances. J. Lab. Clin. Med. 132, 390–403 (1998).

    Article  CAS  Google Scholar 

  55. Hughes, E.A., Hammond, C. & Cresswell, P. Misfolded major histocompatibility complex class I heavy chains are translocated into the cytoplasm and degraded by the proteasome. Proc. Natl. Acad. Sci. USA 94, 1896–1901 (1997).

    Article  CAS  Google Scholar 

  56. Wiertz, E.J. et al. The human cytomegalovirus US11 gene product dislocates MHC class I heavy chains from the endoplasmic reticulum to the cytosol. Cell 84, 769–779 (1996).

    Article  CAS  Google Scholar 

  57. Tirosh, B., Furman, M.H., Tortorella, D. & Ploegh, H.L. Protein unfolding is not a prerequisite for endoplasmic reticulum-to-cytosol dislocation. J. Biol. Chem. 278, 6664–6672 (2003).

    Article  CAS  Google Scholar 

  58. Ye, Y., Meyer, H.H. & Rapoport, T.A. Function of the p97-Ufd1-Npl4 complex in retrotranslocation from the ER to the cytosol: dual recognition of nonubiquitinated polypeptide segments and polyubiquitin chains. J. Cell Biol. 162, 71–84 (2003).

    Article  CAS  Google Scholar 

  59. Huang, A.Y., Bruce, A.T., Pardoll, D.M. & Levitsky, H.I. In vivo cross-priming of MHC class I-restricted antigens requires the TAP transporter. Immunity 4, 349–355 (1996).

    Article  CAS  Google Scholar 

  60. Ackerman, A.L., Kyritsis, C., Tampe, R. & Cresswell, P. Early phagosomes in dendritic cells form a cellular compartment sufficient for cross presentation of exogenous antigens. Proc. Natl. Acad. Sci. USA 100, 12889–12894 (2003).

    Article  CAS  Google Scholar 

  61. Guermonprez, P. et al. ER-phagosome fusion defines an MHC class I cross-presentation compartment in dendritic cells. Nature 425, 397–402 (2003).

    Article  CAS  Google Scholar 

  62. Houde, M. et al. Phagosomes are competent organelles for antigen cross-presentation. Nature 425, 402–406 (2003).

    Article  CAS  Google Scholar 

  63. Chow, A., Toomre, D., Garrett, W. & Mellman, I. Dendritic cell maturation triggers retrograde MHC class II transport from lysosomes to the plasma membrane. Nature 418, 988–994 (2002).

    Article  CAS  Google Scholar 

  64. Boes, M. et al. T-cell engagement of dendritic cells rapidly rearranges MHC class II transport. Nature 418, 983–988 (2002).

    Article  CAS  Google Scholar 

  65. Ackerman, A.L. & Cresswell, P. Regulation of MHC class I transport in human dendritic cells and the dendritic-like cell line KG-1. J. Immunol. 170, 4178–4188 (2003).

    Article  CAS  Google Scholar 

  66. MacAry, P.A. et al. Mobilization of MHC class I molecules from late endosomes to the cell surface following activation of CD34-derived human Langerhans cells. Proc. Natl. Acad. Sci. USA 98, 3982–3987 (2001).

    Article  CAS  Google Scholar 

  67. Lizee, G. et al. Control of dendritic cell cross-presentation by the major histocompatibility complex class I cytoplasmic domain. Nat. Immunol. 4, 1065–1073 (2003).

    Article  CAS  Google Scholar 

  68. York, I.A. et al. A cytosolic herpes simplex virus protein inhibits antigen presentation to CD8+ T lymphocytes. Cell 77, 525–535 (1994).

    Article  CAS  Google Scholar 

  69. Lehner, P.J., Karttunen, J.T., Wilkinson, G.W. & Cresswell, P. The human cytomegalovirus US6 glycoprotein inhibits transporter associated with antigen processing-dependent peptide translocation. Proc. Natl. Acad. Sci. USA 94, 6904–6909 (1997).

    Article  CAS  Google Scholar 

  70. Princiotta, M.F. et al. Quantitating protein synthesis, degradation, and endogenous antigen processing. Immunity 18, 343–354 (2003).

    Article  CAS  Google Scholar 

  71. Reits, E.A., Vos, J.C., Gromme, M. & Neefjes, J. The major substrates for TAP in vivo are derived from newly synthesized proteins. Nature 404, 774–778 (2000).

    Article  CAS  Google Scholar 

  72. Steinman, R.M., Brodie, S.E. & Cohn, Z.A. Membrane flow during pinocytosis. A stereologic analysis. J. Cell Biol. 68, 665–687 (1976).

    Article  CAS  Google Scholar 

  73. Larsson, M. et al. Efficiency of cross presentation of vaccinia virus-derived antigens by human dendritic cells. Eur. J. Immunol. 31, 3432–3442 (2001).

    Article  CAS  Google Scholar 

  74. Freigang, S., Egger, D., Bienz, K., Hengartner, H. & Zinkernagel, R.M. Endogenous neosynthesis vs. cross-presentation of viral antigens for cytotoxic T cell priming. Proc. Natl. Acad. Sci. USA 100, 13477–13482 (2003).

    Article  CAS  Google Scholar 

  75. Ortmann, B. et al. A critical role for tapasin in the assembly and function of multimeric MHC class I-TAP complexes. Science 277, 1306–1309 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank N. Dometios for help in preparing the manuscript. Supported by the Howard Hughes Medical Institute and by National Institutes of Health (F31 AI 101347 to A.L.A.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Cresswell.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ackerman, A., Cresswell, P. Cellular mechanisms governing cross-presentation of exogenous antigens. Nat Immunol 5, 678–684 (2004). https://doi.org/10.1038/ni1082

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1082

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing