Autoimmunity and oxidatively modified autoantigens

Autoimmun Rev. 2008 Jul;7(7):567-73. doi: 10.1016/j.autrev.2008.04.019. Epub 2008 May 27.

Abstract

Oxidative damage mediated by reactive oxygen species results in the generation of deleterious by-products. The oxidation process itself and the proteins modified by these molecules are important mediators of cell toxicity and disease pathogenesis. Aldehydic products, mainly the 4-hydroxy-2-alkenals, form adducts with proteins and make them highly immunogenic. Proteins modified in this manner have been shown to induce pathogenic antibodies in a variety of diseases including systemic lupus erythematosus (SLE), alcoholic liver disease, diabetes mellitus (DM) and rheumatoid arthritis (RA). 8-oxodeoxyguanine (oxidatively modified DNA) and oxidized low-density lipoproteins (LDL) occur in SLE, a disease in which premature atherosclerosis is a serious problem. In addition, immunization with 4-hydroxy-2-nonenal (HNE) modified 60 kD Ro autoantigen induces an accelerated epitope spreading in an animal model of SLE. Advanced glycation end product (AGE) pentosidine and AGE modified IgG have been shown to correlate with RA disease activity. Oxidatively modified glutamic acid decarboxylase is important in type 1 DM, while autoantibodies against oxidized LDL are prevalent in Behcet's disease. The fragmentation of scleroderma specific autoantigens occurs as a result of oxidative modification and is thought to be responsible for the production of autoantibodies through the release of cryptic epitopes. The administration of antioxidants is a viable untried alternative for preventing or ameliorating autoimmune disease, particularly on account of the overwhelming evidence for the involvement of oxidative damage in autoimmunity. However, this should be viewed in the light of disappointing results obtained with the use of antioxidants in cardiovascular disease.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • Antioxidants / metabolism
  • Autoantigens / chemistry
  • Autoantigens / immunology*
  • Autoimmune Diseases / immunology*
  • Autoimmunity*
  • Humans
  • Lipid Peroxidation
  • Oxidation-Reduction
  • Proteins / chemistry
  • Proteins / immunology
  • Proteins / metabolism
  • Reactive Oxygen Species / chemistry
  • Reactive Oxygen Species / metabolism

Substances

  • Antioxidants
  • Autoantigens
  • Proteins
  • Reactive Oxygen Species