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ABSTRACT
Objective  To combine targeted transcriptomic and 
proteomic data in an unsupervised hierarchical clustering 
method to stratify patients with childhood-onset SLE 
(cSLE) into similar biological phenotypes, and study the 
immunological cellular landscape that characterises the 
clusters.
Methods  Targeted whole blood gene expression and 
serum cytokines were determined in patients with cSLE, 
preselected on disease activity state (at diagnosis, Low 
Lupus Disease Activity State (LLDAS), flare). Unsupervised 
hierarchical clustering, agnostic to disease characteristics, 
was used to identify clusters with distinct biological 
phenotypes. Disease activity was scored by clinical 
SELENA-SLEDAI (Safety of Estrogens in Systemic Lupus 
Erythematosus National Assessment-Systemic Lupus 
Erythematosus Disease Activity Index). High-dimensional 
40-colour flow cytometry was used to identify immune cell 
subsets.
Results  Three unique clusters were identified, each 
characterised by a set of differentially expressed 
genes and cytokines, and by disease activity state: 
cluster 1 contained primarily patients in LLDAS, 
cluster 2 contained mainly treatment-naïve patients 
at diagnosis and cluster 3 contained a mixed group of 
patients, namely in LLDAS, at diagnosis and disease 
flare. The biological phenotypes did not reflect 
previous organ system involvement and over time, 
patients could move from one cluster to another. 
Healthy controls clustered together in cluster 1. 
Specific immune cell subsets, including CD11c+ B 
cells, conventional dendritic cells, plasmablasts and 
early effector CD4+ T cells, differed between the 
clusters.
Conclusion  Using a targeted multiomic approach,  
we clustered patients into distinct biological 
phenotypes that are related to disease activity 
 state but not to organ system involvement. This 
supports a new concept where choice of treatment 
and tapering strategies are not solely based on clinical 
phenotype but includes measuring novel biological 
parameters.

INTRODUCTION
Childhood-onset SLE (cSLE) is a devastating 
relapsing remitting autoimmune disease char-
acterised by significant heterogeneity between 
patients.1 Before the age of 30 years, 5%–10% 
of the patients with cSLE will have died as a 
result of severe disease.2–4 At 30 years of age, 
the majority of the patients will have devel-
oped irreversible damage, due to the disease 
or its treatment. Prednisone accounts for 

WHAT IS ALREADY KNOWN ON THIS TOPIC

	⇒ The quest for personalised therapies, which are 
more efficacious while avoiding unnecessary side-
effects, has fuelled omic studies investigating bio-
logical pathways in primarily adults with SLE to find 
novel biomarkers for disease activity states. Children 
could benefit the most from better disease under-
standing as they have a more severe disease than 
adults with SLE.

WHAT THIS STUDY ADDS

	⇒ Targeted multiomics, combined with unsupervised 
hierarchical clustering analysis performed in chil-
dren with SLE, led to the identification of clusters 
of patients with distinct biological phenotypes that 
were associated with disease activity states.

HOW THIS STUDY MIGHT AFFECT RESEARCH, 
PRACTICE OR POLICY

	⇒ Clinical decision-making in SLE and patient outcome 
will be improved by better understanding of the bi-
ological pathways underlying active disease and 
disease remission. Multiomic studies have shown 
their value in adult-onset SLE where the first steps 
are made towards stratification of patients to guide 
treatment choices. With the results of our study, we 
made a start to achieve the same for children with 
SLE.
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around 50% of the damage, which is a reason to limit or 
withdraw prednisone completely.2 3 Response to therapy 
and when to taper or withdraw medication cannot be 
clearly predicted by clinical disease phenotypes. There-
fore, personalised treatment strategies are needed, espe-
cially those that not only use clinical characteristics but 
also novel biomarkers reflecting underlying immunolog-
ical pathway activation.

The quest for personalised therapies that are more 
efficacious while avoiding unnecessary side-effects has 
fuelled studies investigating biological pathways in (c)
SLE to stratify patients in distinct groups. These studies 
mostly used single-layer biological techniques (primarily 
transcriptomics, next to genetics and flow cytometry), 
which could differentiate patients from healthy controls 
(HCs) and were moderately successful in stratifying 
patients in clinically distinct groups.5–7 However, the 
overlap between patient groups was considerable and the 
clinical usefulness of the identified biological parameters 
remains to be determined.

The clinical complexity of cSLE may be impossible to 
dissect by using single-layer biological pathway analysis. 
Combining data from multiple biological layers to stratify 
patients with (c)SLE in groups with similar biological 
pathway activation has been done and is a promising new 
option to improve patient stratification.8–11 Type I inter-
ferons (IFNS) play a pivotal role in the pathogenesis of 
SLE and blocking their activity results in improvement of 
disease activity.12 13 Additionally, other pro-inflammatory 
and anti-inflammatory cytokines, like interleukin (IL)-6, 
IL-10, IL-8, IL-17 and chemokine (C-C motif) ligand 2 
(CCL2), have been associated with SLE disease activity 
and proposed as potential biomarkers.14–16 Moreover, 
biological agents targeting cytokines and their receptors 
have shown their value for the treatment of SLE, thus 
underlining the contribution of these proteins to disease 
pathogenesis.13 17 Hence, combining transcriptomic 
with proteomic (eg, cytokine) data would be a prom-
ising option. Unsupervised computational models inte-
grate high-dimensional data from multiple ‘-omes’ (eg, 
transcriptome and proteome) and are a method to find 
combinations of biological markers that stratify patients 
into homogeneous subgroups.

Here we combined targeted transcriptomic and 
proteomic data in an unsupervised hierarchical clus-
tering method, agnostic to disease characteristics, to 
stratify patients into similar biological phenotypes. More-
over, we identified unique immune cell subsets that char-
acterise these clusters. Lastly, we studied the relation 
of these biological phenotypes to the patient’s clinical 
characteristics.

METHODS
Study population
In this exploratory study, two cohorts of patients with 
cSLE were studied. These patients were preselected in 
three equally sized groups based on disease activity state 

(treatment naïve at diagnosis, Low Lupus Disease Activity 
State (LLDAS), disease flare) (table  1). The discovery 
cohort consisted of 17 patients with cSLE. Blood samples 
from 12 of 17 patients with cSLE were collected at a 
single time point. For 5 of 17 patients, two to three 
blood samples per patient were used; these were taken at 
different time points when the patient was in a different 
disease activity state. The replication cohort consisted of 
12 other patients with cSLE with blood samples taken at 
a single time point (online supplemental table 1). These 
patients were either in LLDAS or had active disease (clin-
ical SELENA-SLEDAI (Safety of Estrogens in Systemic 
Lupus Erythematosus National Assessment-Systemic 
Lupus Erythematosus Disease Activity Index) ≥4). All 
patients fulfilled the Systemic Lupus International Collab-
orating Clinics classification criteria.1 Additionally, eight 
age-matched HCs, without symptoms of underlying viral 
infections or the use of any medications, were included 
(online supplemental table 1).

Gene signatures
A selection of genes from four previously described gene 
modules was determined by reverse transcription-PCR.5 
These gene modules have been associated with disease 
features and recently been translated into applicable 
gene signatures represented by the selected genes.18 The 
genes are listed in table 2.

Cytokine measurement
Fifteen cytokines were measured using an ELLA Simple 
Plex system (Protein simple, San Jose, California, USA) 
and four subsequent cytokines were measured using a 
conventional ELISA according to the manufacturer’s 
protocol (table 2). For further analysis, we used cytokines 
with a value above the lower limit of quantification in at 
least 20% of the patients to prevent skewing of the data. 
Twelve of the 19 cytokines that were measured fulfilled 
this requirement.

High-dimensional flow cytometry
Peripheral blood mononuclear cells from patients and 
HCs were stained with a 40-colour antibody panel as 
previously described19 and analysed using a five-laser 
Aurora spectral flow cytometer (Cytek Biosciences, Cali-
fornia, USA). The unsupervised and statistical inference 
portions of the flow cytometry analysis were performed 
using the OMIQ data analysis software (www.omiq.ai). 
The unsupervised analysis method based on surface 
markers without any two-dimensional gating was used.20 
The workflow included running flowAI to check for 
changes in channels over acquisition time, uniform mani-
fold approximation and projection for dimensionality 
reduction, flowSOM for clustering and edgeR for statis-
tical inference. For the statistical comparisons of abun-
dance, the Flow Cytometry Standard files were subsam-
pled to ensure the same number of events was included 
per group (either per biological phenotype or disease 
activity state).
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Statistical analysis
For the unsupervised hierarchical clustering and prin-
cipal component analysis (PCA), we loaded the patient’s 
clinical, gene expression and cytokine data into R 
(V.4.0.4). Only cytokines which were positive in >20% of 
the patients were used in the analysis. If a cytokine was 
included in the analysis and a sample had a value below 
detection limit, this value was set as the lower limit of 
quantification. Standardised scores (z-scores) were calcu-
lated based on the log10-transformed gene expression 
and cytokine levels. Unsupervised hierarchical clustering 
was performed using Ward’s Hierarchical Agglomer-
ative Clustering Method (ward.d2) on the Euclidean 
distances of the z-scores. The optimal number of clusters 
for both cohorts was assigned with the NbClust (V.1.0.12) 
package in R. Subsequently, heatmaps were plotted using 
the R package Complexheatmap (V.2.10.0).21 PCA was 
performed and visualised based on the z-scores using 
the R function prcomp. The grouping of patients in the 
different clusters was agnostic to parameters reflecting 
clinical disease phenotype.

The Kruskal-Wallis test (three groups) was used to 
analyse comparisons between medians. Levene’s test 
was used for homogeneity of variance across the groups. 
Dunn’s multiple comparisons post hoc test was used to 
correct for multiple testing as indicated in the legend of 
each figure. Spearman’s correlation coefficient was calcu-
lated to assess correlation. Values of p <0.05 were consid-
ered statistically significant. Non-significant results are 
not shown in figures. The false discovery rate (FDR) was 
used to compare immune cell subsets between the biolog-
ical phenotypes. A cut-off value of FDR <0.1 was used to 
indicate significant differences between the populations. 
Graphpad Prism V.8.0 (Graphpad Software, La Jolla, 
California, USA) and R statistical software were used for 
graph design and statistical analysis.

RESULTS
Unsupervised hierarchical clustering identifies three unique 
biological phenotypes associated with disease activity state
Gene expression and cytokine levels were measured in 
23 samples from 17 patients with cSLE. These data were 
combined and subjected to an unsupervised hierarchical 
clustering approach agnostic to any clinical or laboratory 
disease characteristics. This approach identified three clus-
ters, further termed as biological phenotypes (figure 1A). 
Patients within each cluster had a unique and remarkably 
similar combination of differentially expressed genes and 
cytokine profiles. Patients in cluster 1 had a low gene 
expression and cytokine profile, and were termed low 
biological phenotype (LBP). Patients in cluster 2 had a 
high gene expression and high cytokine profile, and were 
termed high biological phenotype (HBP). Lastly, patients 
in cluster 3 had a high gene expression and a low cytokine 
profile and were termed mixed biological phenotype 
(MBP) (figure 1A and online supplemental figure 1).ID
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To confirm that our clustering approach was not 
skewed by the patients from whom we had multiple 
samples collected at different time points, we repeated 
the unsupervised hierarchical clustering with only data 
from the sample collected at the first time point of each 
patient (online supplemental figure 2). The clusters did 
not change, confirming that the biological phenotypes 
were linked to disease activity.

Next, to assess whether these biological phenotypes 
were patient or disease activity state dependent, we studied 
the five patients from whom multiple time points in 
different disease activity states were available. In three out 
of five patients, a change in the biological phenotype was 
directly associated with a change in disease activity state. 
The biological phenotypes from the other two patients 
did not change, but stayed in the MBP group, while the 
disease activity state changed from flare to LLDAS or vice 
versa. Notably, these two patients were the only patients in 
LLDAS in the MBP group, and of all patients in LLDAS, 
they were the only two to have a clinical SELENA-SLEDAI 
above 0 (figure 1A).

Cluster stability in the study cohort was assessed by 
resampling the dataset and computing the Jaccard index 
to the original cluster.22 A stable cluster should yield a 
Jaccard index of >0.75.22 After 1000 iterations, the LBP, 
HBP and MBP group showed a Jaccard index of 0.86, 0.84 
and 0.91, respectively (figure 1B), indicating the stability 
of the three clusters. Next, a PCA showed a clear differ-
ence between the identified clusters (figure  1C). PC1 

and PC2 combined indicated a proportion of variation 
of 62.64%. These findings underscored the robustness of 
the identified clusters.

Subsequently, we studied the association between the 
gene expression and cytokine data to explore the driving 
mechanisms underlying the identified biological pheno-
types. While a strong correlation was observed between 
the tested genes as well as between the tested cytokines, 
a much lower correlation was present between these two 
datasets (figure 1D). Additionally, while the gene expres-
sion and cytokine data are discordant in the MBP group, 
gene expression and cytokine data in the other two 
groups are concordant (online supplemental figure 1). 
This supports the additive value of combined analysis of 
transcriptional and cytokine data in a single analysis and 
indicates that genes and cytokines have independent roles 
in the network that underlies the biological phenotypes.

Validation of biological phenotypes in an independent cSLE 
cohort
In order to validate the biological phenotypes, we applied 
our clustering approach on a second cohort of patients 
with cSLE (n=12), who were either in LLDAS or had active 
disease (clinical SLEDAI >4). From these patients, we had 
transcriptional data of all targeted genes and serum anal-
ysis of 7 of the 12 cytokines studied in the discovery cohort. 
Therefore, we adjusted the clustering algorithm in our 
discovery cohort regarding the number of cytokines. All 
patients had the same biological phenotype as they were 

Table 2  Overview of genes and cytokines

Modules Selected genes* Cytokines measured on ELLA Simple Plex Cytokines measured with ELISA

M1.2 IFN IFI44 IL-6 CXCL13†

IFIT1 TNFα IFNλ‡

IFIT3 IL-8† IL-17‡

Ly6e CCL2† IL-23‡

MxA IL-10

M5.12 IFN PSMB9 IFNγ
ISG20 IFNα (pan)

NCOA7 IFNβ†

SP140 CXCL10†

TAP1 IFNα2†

Neutrophil DEFA4 TGF-β1†

BPI IL-1β‡

DEFA3/DEFA1 IL-12‡

CEACAM8 IL-2‡

CEACAM6 IL-4‡

Plasma cell IGJ

TXNDC5

*Details can be found in Wahadat et al.18

†Cytokines which were measured in the replication cohort.
‡Cytokines that were positive in less than 20% of the samples patients and thus were excluded from further analysis.
CCL2, chemokine ligand 2; IFN, interferon; IL, interleukin; TGF-β1, transforming growth factor beta 1; TNF, tumour necrosis factor.
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initially assigned to (online supplemental figure 3A). To 
find out whether a specific cytokine may be dominant in 
the cluster analysis, we reanalysed the data by removing one 
cytokine at a time to see the effect on the clusters. In this 
analysis, any cytokine could be removed except for IL-8 and 
CCL2, which seem to be the main drivers of these clusters 
(data not shown). Applying our clustering method to the 
replication cohort showed a clear distinction between the 
patients in LLDAS and with active disease (online supple-
mental figure 3B). PCA, representing the gene expression 
and cytokine profiles, indicated that measurements in the 
replication cohort showed good agreement with those in 
the discovery cohort (online supplemental figure 3C). 
Together, these data confirmed the validity and robustness 
of the study outcome, showing identical clustering despite 
the relative low patient numbers in each cohort.

Unsupervised hierarchical clustering groups HCs within the 
low biological phenotype cluster of patients with cSLE
When data from HCs were added to our clustering 
approach, patients with cSLE in the discovery cohort 
remained in the same cluster (online supplemental 
figure 4A). Remarkably, all HCs grouped together with 
patients with cSLE in the LBP cluster and PCA showed a 
clear overlap between these two groups (online supple-
mental figure 4A,B). PCA of the combination of HCs and 
patients in the LBP group from the discovery and repli-
cation cohort also showed overlap (online supplemental 
figure 4C). Patients with cSLE, who clustered together 
with HCs, were primarily patients in LLDAS who were on 
medication, with the majority treated with both hydroxy-
chloroquine (HCQ) and mycophenolate mofetil (MMF). 
Only one of these patients with cSLE was on low-dose 
prednisone (0.05 mg/kg/day) (table 1). Interestingly, all 
patients in LBP with LLDAS without prednisone remained 
in LLDAS for at least 1 year after stopping prednisone. 

Figure 1  Unsupervised hierarchical clustering identifies three unique biological phenotypes associated with disease activity 
state. (A) Unsupervised hierarchical clustering using Ward’s agglomerative method and passing the Euclidean distance between 
samples and using row-based log-transformed z-scores identified three clusters. Visit numbers per patient are depicted at 
the bottom. (B) Jaccard index of the three identified clusters after k-means bootstrapping (measures how many times cells 
consistently clustered together). Orange dashed bar indicates the best range for cluster stability. (C) Principal component 
analysis showing that the three clusters lie apart from each other. The first two components with their percentage of variance 
are shown in parentheses. (D) Correlation plot depicting the inter/intracorrelation between genes and cytokines (N=23). Blue 
indicates a positive and red indicates a negative correlation. Numbers indicate Spearman’s r, squares indicated a significant 
correlation (p<0.05). Red-blue colour indicates the z-scores. HBP, high biological phenotype; LBP, low biological phenotype; 
LLDAS, Low Lupus Disease Activity State; MBP, mixed biological phenotype; SELENA-SLEDAI, Safety of Estrogens in Systemic 
Lupus Erythematosus National Assessment-Systemic Lupus Erythematosus Disease Activity Index.
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These data illustrate that the biological phenotype of HCs 
with the used biological markers was not different from 
patients with cSLE with low disease activity in this explor-
ative study.

Biological phenotypes reflect disease activity states
Most patients in the LBP group were in LLDAS (six of 
eight). The other two patients were included at diagnosis, 
with only involvement of the mucocutaneous domain 
next to serological activity (SELENA-SLEDAI 2 and 6). 
The median clinical SELENA-SLEDAI in this cluster was 
0 (0–6) (figure 2A). The HBP group contained patients 
at diagnosis and one patient with a flare. The median clin-
ical SELENA-SLEDAI in this cluster was 10 (4–15; p=0.011 
(Kruskal-Wallis test with Dunn’s multiple comparisons 
post hoc)) (figure  2A). Lastly, for patients in the MBP 
group, which concerns a mix of patients in LLDAS, 
disease flare or at diagnosis, the median clinical SELENA-
SLEDAI was 5.5 (0–14; p=0.026 (Kruskal-Wallis test with 
Dunn’s multiple comparisons post hoc)) (figure  2A). 
When disease duration was compared between the three 
clusters, patients in the HBP group had median disease 
duration of 0 (0–6.0) years, while patients in the MBP and 
LBP cluster had median disease duration of 1.6 (0–3.7) 
and 3.2 (0–4.1) years, respectively (figure 2B). This could 
suggest that disease duration could be the driving factor 
for the biological phenotypes. However, this is contra-
dicted by the finding that two patients who were at diag-
nosis were also found in the LBP group and patients with 
a disease flare were in the HBP group. When the days in 
LLDAS were compared between LLDAS patients in the 
LBP and MBP group, we found that LLDAS patients in 
the LBP group were already in LLDAS for a much longer 
period of time (median 715 days) when compared with 
the two LLDAS patients in the MBP group (median time 
in LLDAS 198 days) (figure  2B). Together, these data 
underline that not only disease duration but particularly 
(biological) disease activity might be the driving factor 
for the biological disease phenotypes.

Medication use does not explain the biological phenotypes 
identified by hierarchical clustering
When comparing medication use of the patients in the 
different clusters, HCQ and MMF usage were similar in 
the LBP and MBP groups, yet patients clustered sepa-
rately (figure  2B). Notably, four out of five patients in 
the HBP group were treatment naïve at blood sampling 
(figure  2B). Interestingly, almost all (8 of 10) patients 
in the MBP group were treated with prednisone, where 
one out of eight and zero out of five were treated with 
prednisone in the LBP and HBP groups, respectively 
(figure  2B). In the MBP group, no correlation was 
found between prednisone dosage and gene expressions 
or cytokine levels (online supplemental figure 5 and 
table 1) suggesting that medication use does not explain 
the biological phenotypes identified by our clustering 
approach.

Biological phenotypes are not driven by organ system 
involvement or currently used laboratory parameters for SLE 
disease activity
To assess whether biological phenotypes reflect specific 
organ system involvement, we studied the organ systems 
that were ever affected in each patient. No difference 
was observed between the number of organ systems ever 
involved between the three clusters (figure 2C). Studying 
the autoantibody profiles of the patients in the clusters, 
no difference between patients with cSLE in the different 
clusters was found (table 1). Lastly, we studied whether 
routine laboratory parameters to measure SLE disease 
activity were different between the three biological 
phenotypes (figure  2D). Not surprisingly, anti-dsDNA, 
C reactive protein, erythrocyte sedimentation rate and 
IgG levels were highest in the HBP group, the group with 
newly diagnosed patients (figure 2D). However, C3, C4, 
thrombocyte, lymphocyte and neutrophil counts did not 
differ between any of the groups and importantly could 
not differentiate between patients in LBP and MBP. These 
data indicate that the identified biological phenotypes 
are not primarily driven by organ system involvement, 
and currently used laboratory parameters to measure 
cSLE disease activity are of limited influence on biolog-
ical disease phenotype (LBP, MBP) during follow-up of 
the patient.

High-dimensional flow cytometry identifies immune cell 
subsets that differ between biological phenotypes
To investigate the cellular landscape that characterised 
the three identified biological phenotypes, we applied 
40-colour spectral flow cytometry (figure 3A). FlowSOM 
analysis identified 32 distinct immune cell subsets (online 
supplemental figure 6). In line with previous findings,6 
there was a clear difference in the immune cell subsets 
from HCs compared with the patients. In total, 14 of 
32 populations differed significantly between these two 
groups, with central memory CD8+ T cells being the 
cell population that showed the highest fold difference 
(figure 3B,C and online supplemental table 2).

When we compared the difference between the biolog-
ical phenotypes in patients with cSLE, the HBP group 
clearly differed from the other two biological phenotypes: 
16 of 32 of the identified immune cell subsets differed 
between the HBP and LBP groups (figure 3D and online 
supplemental table 3), and 10 of 32 populations differed 
between the HBP and MBP groups (figure 3E,F and online 
supplemental table 4). When comparing the LBP and MBP 
groups, only 2 of 32 populations differed (figure 3F and 
online supplemental table 5). Of interest, CD11c+ CD16− 
dendritic cells (DCs) were increased in the LBP group, 
while a unique CD11c+ B cell population was increased 
in the MBP and HBP group (figure 3F). To assess asso-
ciations with the biological phenotypes, we studied the 
correlation between the 32 immune cell subsets and the 
clinical SELENA-SLEDAI. Nine immune cell populations 
were significantly associated with the clinical SELENA-
SLEDAI (online supplemental figure 7). Of these, IgG+ 

 on A
pril 9, 2024 by guest. P

rotected by copyright.
http://lupus.bm

j.com
/

Lupus S
ci M

ed: first published as 10.1136/lupus-2022-000799 on 3 A
pril 2023. D

ow
nloaded from

 

https://dx.doi.org/10.1136/lupus-2022-000799
https://dx.doi.org/10.1136/lupus-2022-000799
https://dx.doi.org/10.1136/lupus-2022-000799
https://dx.doi.org/10.1136/lupus-2022-000799
https://dx.doi.org/10.1136/lupus-2022-000799
https://dx.doi.org/10.1136/lupus-2022-000799
https://dx.doi.org/10.1136/lupus-2022-000799
https://dx.doi.org/10.1136/lupus-2022-000799
https://dx.doi.org/10.1136/lupus-2022-000799
https://dx.doi.org/10.1136/lupus-2022-000799
http://lupus.bmj.com/


Wahadat MJ, et al. Lupus Science & Medicine 2023;10:e000799. doi:10.1136/lupus-2022-0007998

Lupus Science & Medicine

memory B cells and the central memory CD8+ T cells did 
not show any significant difference between the biolog-
ical phenotypes (online supplemental figure 7). The 
seven other populations significantly differed between 

the identified biological phenotypes (figure  3G). Here, 
CD11c+ B cells, plasmablasts and early effector CD4+ T 
cells were increased in the HBP group compared with 
the LBP group. On the other hand, conventional DCs, 

Figure 2  Biological phenotypes are associated with disease states and not influenced by the use of medication. (A) Clinical 
SELENA-SLEDAI score of patients with different biological phenotypes. Each dot represents individual patients. (B) Heatmap 
indicating the disease activity state, clinical SELENA-SLEDAI, prednisone usage in mg/kg/day, disease duration in years, days 
in LLDAS, hydroxychloroquine (HCQ) and mycophenolate mofetil (MMF) use. (C) Heatmap indicating organ domain involvement 
ever. Bar plot indicates the number of organ domains involved per patient in each cluster. (D) Bar plots indicating 10 laboratory 
parameters in patients with different biological immune phenotypes. Kruskal-Wallis test with Dunn’s multiple comparisons 
post hoc test was used for relation between the clusters. CRP, C reactive protein; ESR, erythrocyte sedimentation rate; HBP, 
high biological phenotype; LBP, low biological phenotype; LLDAS, Low Lupus Disease Activity State; MBP, mixed biological 
phenotype; SELENA-SLEDAI, Safety of Estrogens in Systemic Lupus Erythematosus National Assessment-Systemic Lupus 
Erythematosus Disease Activity Index.
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Figure 3  High-dimensional flow cytometry identifies immune subsets that differ between biological phenotypes. (A) Population 
cluster identification in high-dimensional 40-colour flow cytometry data using uniform manifold approximation and projection 
(UMAP) dimensionality reduction. Visualisation is performed on combined patients with childhood-onset (cSLE) and healthy 
control (HCs) data (n=31). (B) Volcano plot comparing patients/HCs. Positive fold changes indicate cellular populations 
increased in patients, while negative fold changes indicate decreases in patients. (C) UMAP plots of HCs (n = 8) and all patients 
with cSLE (n=23). Populations that are increased in each group are indicated by a dashed line. (D) Volcano plot comparing HBP 
(N=5) versus LBP (N=8). Positive fold changes indicate cellular populations increased in HBP compared with LBP. (E) Volcano 
plot comparing HBP (N=5) versus MBP (N=10). Positive fold changes indicate cellular populations increased in HBP compared 
with MBP. (F) Volcano plot comparing LBP (N=8) versus MBP (N=10). Positive fold changes indicate cellular populations 
increased in MBP compared with LBP. (G) Bar plots depict the percentage of cells in total population. The FDR is depicted 
as statistical analysis. DCs, dendritic cells; FDR, false discovery rate; HBP, high biological phenotype; LBP, low biological 
phenotype; MBP, mixed biological phenotype; NK, natural killer; pDCs, plasmacytoid DCs.
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TCRγδ+ CCR7− CD45RA−, plasmacytoid DCs and mature 
natural killer CD159+ cells were decreased in the HBP 
group compared with the LBP group (figure 3G).

Taken together, multiple immune cell subsets differed 
significantly between the biological phenotypes and were 
associated with disease activity. This cellular analysis 
underscores the connection between immune cell subsets 
and targeted transcriptomic/proteomic data, indicating 
the additional relevance of these cells in defining biolog-
ical phenotypes.

DISCUSSION
Our study illustrates that combining targeted transcrip-
tomic and proteomic data is a reliable method to cluster 
patients in similar clinical and biological phenotypes 
that represent a specific disease activity state rather than 
organ system involvement. Moreover, high-dimensional 
flow cytometry revealed immune cell subsets that were 
characteristic for these phenotypes. Thus, these biolog-
ical phenotypes can facilitate patient stratification for 
optimal treatment choices and provide information to 
improve interventional clinical trial design.

Transcriptomic studies in SLE have been able to 
discriminate between patients with low and high disease 
activity. Yet, gene signatures are often expressed in binary 
values and remain relatively stable over time, and there-
fore are not sensitive to changes that occur during clinical 
follow-up of patients.23 Multiomics have led to ground-
breaking findings in the field of oncology indicating their 
usefulness for other fields like autoimmunity.24 One study, 
in patients with adult-onset SLE, combined different 
gene modules and various plasma soluble mediators and 
identified seven unique molecular profiles.11 However, 
these profiles did not distinguish between patients with 
different disease activity scores. Furthermore, this study 
included multiple gene modules from which the majority 
had no relation with SLE disease activity.5 In contrast, 
we chose a targeted approach and selected genes and 
cytokines that previously were associated with disease 
activity5 18 expecting a higher clinical relevance from 
these genes and cytokines. Indeed, this approach enabled 
a more precise stratification of patients in groups with 
similar biological phenotypes that are related to disease 
activity state.

For the first time, we were able to link almost all patients 
with cSLE in LLDAS to a specific biological disease pheno-
type, namely the LBP group. Even more, HCs clustered 
with these LLDAS patients in the LBP group. This shows 
that patients on medication can achieve comparable 
combinations of gene expression and cytokine profiles 
as HCs and additionally increases our understanding of 
LLDAS being associated with reduced risk of flares, less 
damage development and corticosteroid sparing.25 26 
Hence, we speculate that for more accurate character-
ising of LLDAS, analysis of these novel biological param-
eters could be used. This concept is in line with findings 
in patients with ulcerative colitis in which histological 

remission at the gut level, in addition to clinical remis-
sion, is associated with corticoid sparing and less hospital-
isation for disease flares.27

Medication usage can be an important confounding 
factor in analysing biological profiles in patients. For 
example, high-dose corticosteroids have been reported 
to have an inhibitory effect on multiple proinflammatory 
cytokines and the type I IFN signature.28 29 In our study, 
patients who used prednisone (primarily in the MBP 
group) still had high levels of type I IFN-induced genes 
and prednisone dose did not correlate with gene expres-
sion or protein levels. Moreover, between the different 
biological phenotypes, no major differences in HCQ 
and MMF usage were observed. Remarkably, almost all 
patients in the LBP group, who have low gene and cyto-
kine profiles, were in LLDAS and used HCQ and disease-
modifying antirheumatic drugs but not prednisone. 
Interestingly, these patients remained in LLDAS for at 
least 1 year after stopping prednisone. This underscores 
that continued prednisone use is not needed to remain 
in LLDAS.

As expected, pro-inflammatory cytokines are upregu-
lated in the HBP group compared with the LBP group. 
An interesting finding is the upregulation of trans-
forming growth factor beta (TGF-β) in HCs, patients in 
the LBP and also in patients in the HBP group. This latter 
finding is somewhat contradictory to literature showing 
that low concentrations of TGF-β are associated with high 
disease activity.30 However, we also know that TGF-β can 
have dual roles with the activation of resting monocytes 
but also the inhibition of activated macrophages.31 32 This 
in line with the theory that often the effects of TGF-β 
are context dependent and more research is needed to 
understand the biological role of TGF-β.33 Additionally, 
when analysing whether one specific cytokine was domi-
nant in driving the clusters, we found that IL-8 and CCL2 
were the main drivers of the clusters in our explorative 
study. Although these findings are suggesting that the 
analyte number could be reduced, additional studies with 
larger datasets should first confirm this.

In SLE, gene signatures and cytokines have been asso-
ciated with involvement of certain organ systems.23 34 35 
Currently, organ system involvement is seen as an important 
trait that guides treatment strategies. Here we show that 
biological phenotypes are able to change and are more a 
reflection of the patients’ disease activity state than that 
of the specific organ system(s) involved. This supports 
a new concept where choice of treatment and tapering 
strategies are not solely based on clinical phenotype but 
includes measuring these novel biological parameters. 
This concept is supported by our recent work showing that 
patients with cSLE, irrespective of organ system involve-
ment, reached LLDAS in a median time of 6 months. This 
was achieved by a treatment strategy focusing on limited 
use of corticosteroids and early introduction of immuno-
suppressives, specifically when corticosteroids could not 
be tapered within 3 months.36
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High-dimensional flow cytometry confirmed previous 
findings that immune cell subsets differ between HCs 
and patients with SLE.10 A caveat in the previous study 
in cSLE that focused on immune cell subset differences 
is the high number of patients with low disease activity 
(SLEDAI ≤4).6 In our study, we preselected patients 
in equally sized groups with different disease activity 
states to overcome this caveat. Interestingly, distinct 
immune cell populations differed between the patients 
with different biological phenotypes. This indeed shows 
the interconnection between the biological phenotypes 
based on a combination of transcriptional and cytokine 
data and immune cells in peripheral blood, which hints 
towards the idea that these immune cells could also be 
used to reflect the identified biological phenotypes. In 
the ideal setting, measuring a small number of cell popu-
lations could predict a specific clinical disease course and 
guide treatment strategy, as has been implemented in 
oncology.37 Possible candidates for this purpose are the 
CD11c+ B cell and CD11c+ CD16- DC populations identi-
fied in our study, as these cells were able to discriminate 
between patients in the LBP and MBP group, which may 
be a difficult task based on clinical characteristics. The 
CD11c+ B cell population has previously been associated 
with disease activity and proposed to be driven by an 
extrafollicular B cell activation route in SLE.38 39 Likewise, 
decreased blood levels of the CD11c+ CD16- DC popula-
tion have been associated with active disease in SLE.40

Better understanding of biological pathways under-
lying active disease, LLDAS and remission will facili-
tate tailored treatment strategies and improve patient 
outcome. Children would benefit the most as they have 
a more severe disease than adults with SLE.3 Multiomic 
data have shown their value in adult-onset SLE where the 
first steps are made towards stratification of patients to 
guide treatment choices.41 Our explorative study in chil-
dren with SLE for the first time links disease activity states 
to biological phenotypes. We identified three clusters, in 
which the MBP group is the most interesting group, as 
from a clinical point of view, we would not have clustered 
these patients together. The next step is to extend patient 
numbers and perform machine learning techniques 
on combined targeted gene expression, cytokine, flow 
cytometry and clinical data to facilitate further under-
standing of underlying biological mechanisms and make 
a start towards stratification of patients to guide treatment 
choices in cSLE.

Our study has limitations. First, we have a low number 
of patients in our analysis. Expanding this study in a 
larger set of patients with different ethnic backgrounds 
will be our next step. The validation of the results by using 
a PCA, bootstrapping and a replication cohort makes us 
confident that expanding the cohort will produce similar 
results. Second, some of the analyses performed are 
based on multiple time points from the same individuals. 
Although we performed extra analyses that suggest that 
any underlying correlations from repeated samples from 
the same individual did not appear to substantively affect 

the clustering, we recognise that repeated observations 
from the same person are correlated. Third, we have 
only used a combination of (targeted) transcriptomics 
and proteomics, while there are several other omic tech-
niques that may also reflect the biological pathways that 
play a role in the pathogenesis of SLE.42

In conclusion, here we show that integrating targeted 
transcriptomic and proteomic data in an unsupervised 
hierarchical clustering model leads to the identification 
of biological phenotypes that reliably distinguish patients 
with cSLE with different disease activity states, which could 
not be achieved by currently used clinical characteristics. 
This is a first step towards developing personalised treat-
ment strategies in children with lupus based on clinical 
phenotype and new biomarkers. Future studies should 
translate and simplify these tools by reducing the number 
of analytes that need to be measured, which will facilitate 
implementation in daily clinical practice.
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