Article Text

Download PDFPDF

LSO-013 Metabolomics analysis identifies biomarkers for APS and suggests potential new pathway for APS pathogenesis
  1. Yongjing Luo1,
  2. Chun Li1,
  3. Zhanguo Li1 and
  4. Yu Zuo2
  1. 1Department of Rheumatology and Immunology, Peking University People’s Hospital, China
  2. 2Division of Rheumatology, Department of Internal Medicine, University of Michigan, USA


Background The metabolic disturbances that underlie antiphospholipid syndrome (APS) are currently unknown. The goal of this study is to utilize high-throughput metabolomics screening to identify new biomarkers and dysregulated pathways in primary APS patients.

Methods Fasting serum samples were collected from 20 primary APS patients and 17 healthy controls. High-throughput metabolomics screening of 247 small molecule metabolites were performed via gas chromatography coupled mass spectrometry. Multiple variate analysis, principal components analysis (PCA), partial least squares discriminant analysis (PLS-DA), and pathway analysis were completed. SYTOX Green NETosis assay was performed utilizing freshly prepared healthy donor neutrophils with various stimulants including PMA, PMA+DPI, normal human IgG, antiphospholipid antibodies (aPL), sphingosine-1 phosphate (S1P), and aPL plus various concentration of S1P.

Results 50 circulating small molecule metabolites were significantly different between primary APS patients and healthy controls. PLS-DA modeling was performed and demonstrated a clear separation between primary APS patients and healthy controls. 15 metabolic biomarkers that made the biggest contribution to the differentiation of primary APS patients and the healthy controls assessed by variable importance on projection score were identified. Pathway analysis revealed that sphingosine metabolism was the most enriched pathway among primary APS patients. To further elucidate the role of sphingosine metabolism in APS, we examined the effect of S1P, the product of sphingosine metabolism, on aPL mediated NETosis. aPL mediated NETosis was significantly potentiated by S1P in a concentration dependent manner. S1P did not trigger NETosis by itself (figure 1).

Conclusions This study comprehensively profiled the serum metabolites of primary APS patients and identified metabolic biomarkers that have the potential to be used as a diagnostic tool for differentiating APS from healthy controls. The APS metabolome analysis also revealed a potential significant role of S1P/S1PR axis in APS pathogenesis.

The effect of S1P on aPL mediated NETosis. aPL mediated NETosis was significantly potentiated by S1P in a concentration dependent manner. S1P did not trigger NETosis by itself.

  • antiphospholipid syndrome
  • sphingosine-1 phosphate
  • NETosis

This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See:

Statistics from

Request Permissions

If you wish to reuse any or all of this article please use the link below which will take you to the Copyright Clearance Center’s RightsLink service. You will be able to get a quick price and instant permission to reuse the content in many different ways.