Article Text

Download PDFPDF

Histone H2AX phosphorylation as a measure of DNA double-strand breaks and a marker of environmental stress and disease activity in lupus
  1. Rajaie Namas1,
  2. Paul Renauer1,
  3. Mikhail Ognenovski1,
  4. Pei-Suen Tsou1 and
  5. Amr H Sawalha1,2
  1. 1Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
  2. 2Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
  1. Correspondence to Dr Amr H Sawalha; asawalha{at}umich.edu

Abstract

Objective Defective or inefficient DNA double-strand break (DSB) repair results in failure to preserve genomic integrity leading to apoptotic cell death, a hallmark of systemic lupus erythematosus (SLE). Compelling evidence linked environmental factors that increase oxidative stress with SLE risk and the formation of DSBs. In this study, we sought to further explore genotoxic stress sensitivity in SLE by investigating DSB accumulation as a marker linking the effect of environmental stressors and the chromatin microenvironment.

Methods DSBs were quantified in peripheral blood mononuclear cell subsets from patients with SLE, healthy controls, and patients with rheumatoid arthritis (RA) by measuring phosphorylated H2AX (phospho-H2AX) levels with flow cytometry. Phospho-H2AX levels were assessed in G0/G1, S and G2 cell-cycle phases using propidium iodide staining, and after oxidative stress using 0.5 µM hydrogen peroxide exposure for 0, 2, 5, 10, 30 and 60 min.

Results DSB levels were significantly increased in CD4+ T cells, CD8+ T cells and monocytes in SLE compared with healthy controls (p=2.16×10−4, 1.68×10−3 and 4.74×10−3, respectively) and RA (p=1.05×10−3, 1.78×10−3 and 2.43×10−2, respectively). This increase in DSBs in SLE was independent of the cell-cycle phase, and correlated with disease activity. In CD4+ T cells, CD8+ T cells and monocytes, oxidative stress exposure induced significantly higher DSB accumulation in SLE compared with healthy controls (60 min; p=1.64×10−6, 8.11×10−7 and 2.04×10−3, respectively).

Conclusions Our data indicate that SLE T cells and monocytes have increased baseline DSB levels and an increased sensitivity to acquiring DSBs in response to oxidative stress. Although the mechanism underlying DSB sensitivity in SLE requires further investigation, accumulation of DSB may serve a biomarker for disease activity in SLE and help explain increased apoptotic cell accumulation in this disease.

  • Double strand breaks
  • Oxidative stress
  • H2AX phosphorylation

This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

Statistics from Altmetric.com

Request Permissions

If you wish to reuse any or all of this article please use the link below which will take you to the Copyright Clearance Center’s RightsLink service. You will be able to get a quick price and instant permission to reuse the content in many different ways.