Article Text

Download PDFPDF

GG-09 A role for EBNA2 in mechanisms that are responsible for lupus and other autoimmune diseases
  1. JB Harley1,2,3,4,5,
  2. X Chen1,
  3. M Pujato1,
  4. D Miller1,
  5. A Maddox1,
  6. C Forney1,
  7. AF Magnusen1,
  8. A Lynch1,
  9. K Chetal6,
  10. M Yukawa7,
  11. A Barski4,7,8,
  12. N Salomonis4,6,
  13. KM Kaufman1,2,4,5,
  14. LC Kottyan1,4 and
  15. MT Weirauch1,3,4,6
  1. 1Center for Autoimmune Genomics and Etiology (CAGE)
  2. 2Division of Immunobiology
  3. 3Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
  4. 4Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio
  5. 5US Department of Veterans Affairs Medical Center, Cincinnati, Ohio
  6. 6Division of Biomedical Informatics
  7. 7Division of Allergy and Immunology
  8. 8Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA


Background Explaining the genetics of many diseases is challenging because most associations localize to incompletely understood regulatory regions.

Methods We show that transcription factors (TFs) occupy multiple loci of individual complex genetic disorders much more than expected by chance using novel computational methods.

Results Application to 213 phenotypes and 1,544 TF binding datasets identifies 2,264 relationships between hundreds of TFs and 94 phenotypes, including AR in prostate cancer and GATA3 in breast cancer. Strikingly, nearly half of the systemic lupus erythematosus risk loci are occupied by the Epstein-Barr virus (EBV) Nuclear Antigen 2 (EBNA2) protein (OR=6, P<10E-24 after Bonferroni correction), which co-clusters with a sub-set (<60) human TFs, revealing gene-environment interaction, and identifying the EBV transformed B cell as a putative site for some of the genetic mechanisms altering disease risk. Analogous EBNA2-anchored associations exist in multiple sclerosis, rheumatoid arthritis, inflammatory bowel disease, type 1 diabetes, juvenile idiopathic arthritis, and celiac disease. Instances of allele-dependent DNA binding with downstream effects on gene expression at plausibly causal variants are consistent with EBNA2 dependent genetic mechanisms.

Conclusions Our results nominate mechanisms that operate across risk loci within disease phenotypes; they suggest new paradigms for disease origin and strongly support a role for Epstein-Barr virus in the generation of systemic lupus erythematosus, as well as of particular other autoimmune diseases, apparently related to lupus by the genomic mechanisms that produce them.

Statistics from

Request Permissions

If you wish to reuse any or all of this article please use the link below which will take you to the Copyright Clearance Center’s RightsLink service. You will be able to get a quick price and instant permission to reuse the content in many different ways.