Introduction
SLE is a heterogeneous, multisystem autoimmune disease characterised by waxing and waning disease activity over time.1 Accurately measuring lupus disease activity and the changes in disease activity has proven to be a difficult task. This is highlighted by failure of over 20 late phase therapeutic trials to produce interpretable results,2 though recent positive studies of belimumab, anifrolumab, ustekinumab and baricitinib have allowed guarded optimism. Multiple clinical assessment tools attempt to distill the myriad of symptoms with different levels of severity and risk to vital organs. It follows that the consistent and successful application of these measures as end points in clinical trials remains elusive.3
The most widely used disease activity measures in international, multicentre trials are the SLE Disease Activity Index (SLEDAI)4 5 and the British Isles Lupus Assessment Group Index (BILAG 2004).6 Beyond their individual strengths and weaknesses (reviewed elsewhere3), both instruments were developed through a consensus approach to derive thresholds for changes in disease activity.7 The SLEDAI is less sensitive to change, sets a high bar for improvement, is scored based on the ‘typical’ severity of a symptom, regardless of current severity in an individual patient and cannot record worsening or partial improvement. The BILAG accommodates gradations in severity, but predefined thresholds for change impede its accuracy. Moreover, the BILAG compresses different descriptors within each organ, scoring does not increase when ≥2 descriptors within an organ are equally severe. To address the shortcomings of each disease activity instrument, composite indices have been developed, such as the SLE Responder Index (SRI)8 and BILAG-Based Combined Lupus Assessment (BICLA),9 both used in large registrational studies. These end points are dominated and limited by the instruments that gauge improvement: the SLEDAI and BILAG, respectively.3
Visual analogue scales (VAS) allow continuous scaling of disease severity, directly grounded in clinical observation at the time of scoring. Even the best glossary-based instrument cannot describe appropriate scoring increments for every clinical observation; VAS have the potential to bypass that problem. Furthermore, VAS provide an opportunity for studies to determine clinically significant changes, rather than relying on predetermined glossary-based definitions as landmarks for disease severity. Unfortunately, past studies of VAS in SLE have given inconsistent results, likely due to the potential variations in how clinicians interpret these scales.10 11
The SELENA SLEDAI Physician’s Global Assessment (SSPGA) VAS has addressed the problem by adding severity anchors at mild, moderate and severe disease and a simple but specific protocol for scoring designed to improve interrater and intrarater consistency.4 5 The SSPGA was originally developed as a 3 inch scale,4 5 but was later adapted to a 100 mm scale in many clinical trials, where it was found to provide data consistent with directional changes in BILAG and SLEDAI.12–15 The Lupus Foundation of America-Rapid Evaluation of Activity in Lupus (LFA-REAL) modifies and extends the SSPGA structure by providing subscales for individual symptoms, allowing the separate scoring of symptoms within the same organ (eg, rash and vasculitis), as well as scoring of ‘other’ less common symptoms of SLE, such as gastrointestinal and ophthalmic involvement (online supplementary figure 1).7 The structure of LFA-REAL reflects its conception as an integration of elements of the SSPGA VAS and the organ-based scoring system of the BILAG to allow the clinician’s evaluation of patient progress at the level of individual symptoms, organs or total disease activity. The instrument was designed to remain versatile and broad, yet simple enough for scoring by both clinicians and clinical trialists. While the LFA-REAL includes both a clinician’s version and a similarly minded patient-reported outcome, the current paper only discusses the clinician instrument.
As the clinician’s version of the LFA-REAL evolved, scaling increments were more clearly defined and additional innovations differentiated it from the SSPGA and previous VAS scores.7 In particular, the LFA-REAL scoring instructions include: 1) disease activity is scored without regard for the medications being used (ie, mild arthritis in a patient on 20 mg of prednisone is not rated as higher disease activity than the same mild arthritis in a patient on no medication); 2) at consecutive visits the previous VAS must be examined prior to scoring the current one, and consider progress to the current visit; 3) the landmarks of 1, 2 and 3 correspond to each level of disease severity: 0—signifies complete remission, 3—reflects the worst disease possible in a patient with SLE, not the worst seen in the current patient. Methods to gauge disease grade cutoffs between and around the intervening landmarks have been inconsistent in clinical trials using SSPGA, largely due to the lack of consistent guidance provided in instructions. The LFA-REAL specifically assigns equal lengths for each scale for mild, moderate and severe disease. Thus, mild disease is scored between 0 and 1, moderate between 1 and 2 and severe between 2 and 3.
A previous study evaluated the LFA-REAL in relation to SLEDAI, BILAG and SSPGA in routine clinical care of patients with SLE, demonstrating significant correlations to those instruments (r=0.58–0.88, p<0.001).16 In the current study, we compare the performance of SSPGA and LFA-REAL with other SLE trial outcome measures using blinded patient data from a clinical trial in SLE.