Discussion
Several studies demonstrated that renal pathological CI was an individual prognostic indicator of worse renal outcomes in patients with LN.5–10 Biomarkers which could better reflect chronic injury are needed. In this current work, we initially explored a candidate renal biomarker associated with renal pathological CI scores using renal specimens’ proteomic technology in patients with proliferative LN and comprehensively analysed its clinicopathological significance based on a well-defined cohort.
First, proteomic technology was applied to analyse the differential proteome between the CI ≥1 group and the CI=0 group or the NC group at the renal level. The KEGG pathway enrichment analysis demonstrated that the ‘other glycan degradation’ pathway was significantly enriched in the CI ≥1 group and NEU1 was one of the most predominant proteins (fold change=7.90). Moreover, further analysis of each component of the CI also indicated the importance of the ‘other glycan degradation’ pathway in the renal chronicity of patients with LN. Based on the generous recommendation for screening process of proteomics, researchers usually tend to choose the pathways/proteins with higher fold change for the subsequent analysis.31–33 In our study, although HEXA/HEXB was universally overexpressed in the CI ≥1 group, their expressions in the CI=0 group were also high and their fold change (CI ≥1/CI=0) was 1.78 and 1.60, respectively, which was lower than that of NEU1 (7.90). Moreover, the potent pathogenic roles of the candidate proteins should also be taken into consideration. After literature review, we found that NEU1 was highly expressed in the mesangial cells of lupus-prone mice, could mediate interleukin-6 (IL-6) production and was reported to be associated with fibrosis.29 34–38 Taken together, it was suggested that NEU1 might participate in the chronicity of LN. Next, we verified the proteomic results through IHC technology in other 58 patients with proliferative LN and we found that renal NEU1 expression, especially in the tubulointerstitium area, was significantly higher in the CI ≥1 group compared with the CI=0 group or the NC group. The intensity of renal NEU1 expression was positively correlated with serum creatinine values, eGFR and some renal pathological chronicity indices. Urinary NEU1 excretion was also positively correlated with renal pathological CI scores. More importantly, high renal NEU1 expression both in the glomeruli and tubulointerstitium was identified as an independent risk factor for worse renal outcomes. These all suggested that NEU1 might be a candidate renal biomarker of chronicity of proliferative LN. Interestingly, KEGG analysis of the downregulated proteins demonstrated an enrichment of the metabolic pathway. As the metabolic reprogramming was reported to play an important role in the pathogenesis of LN,39 40 further explorations are needed.
The chronicity of LN was assessed by NIH chronicity indices, which comprised glomerular sclerosis, fibrous crescents, tubular atrophy and interstitial fibrosis.12 41 Research on the pathomechanism of chronic lesions mainly focused on interstitial fibrosis, and transforming growth factor-β (TGF-β) was the most important factor which drove fibrosis in most CKD, including LN.42 43 TGF-β1 could activate both canonical (Smad-based) and non-canonical (non-Smad-based) signalling pathways to induce extracellular matrix (ECM, the hallmark of fibrosis) production and lead to renal fibrosis. Inhibition of the TGF-β1 or its downstream pathways could significantly limit renal fibrosis, whereas overexpression of TGF-β1 could induce renal fibrosis42 and vice versa.
Neuraminidases (sialidases) (Neu) are key enzymes that participate in other glycan degradation and glycosphingolipid metabolism that could remove sialic acids from gangliosides and proteins, and their activity could lead to immune cell infiltration, inflammation and tissue damage.29 37 44–46 Of them, NEU1 is the major Neu that is expressed in the kidney and was reported to be associated with childhood-onset nephrotic syndrome, IgA nephropathy and LN.29 37 38 47–50 According to previous studies, NEU1 was associated with chronicity of diseases (fibrosis). NEU1 takes centre stage in the physiological formation of elastic fibres, which were the fundamental components of the ECM (the hallmark of fibrosis).34 51 In idiopathic pulmonary fibrosis, the elevated expression of NEU1 could provoke lymphocytic infiltration and collagen deposition, leading to pulmonary fibrosis,35 and the inhibition of NEU1 significantly reduced the accumulation of pulmonary lymphocytes and deposition of collagen, which indicated that NEU1-selective inhibition provided a potential treatment for pulmonary fibrotic diseases.52 Meanwhile, NEU1 was considered to be able to regulate TGF-β activation, which played an important role in renal fibrosis.34 35 Thus, we proposed that NEU1 might participate in the chronicity of LN. Tamara K Nowling’s group29 previously found that the mRNA levels of NEU1 were elevated in the kidney of nephritic mice compared with that in non-nephritic mice (MRL/lpr mouse model), and urinary NEU1 excretion was much higher in patients with LN in comparison with patients with lupus without nephritis. They also found that NEU1 was highly expressed in the mesangial cells of lupus-prone mice (MRL/lpr and NZM2410).36 Further investigation demonstrated that NEU1 mediated IL-6 production (IL-6 played an important role in the onset of nephritis53–59) in lupus-prone mesangial cells through Toll-Like Receptor 4 (TLR4)-p38/Extracellular signal-Regulated Kinases (ERK) Mitogen-Activated Protein Kinase (MAPK) signalling pathway.37 38 In 2020, the same group applied Neu inhibitor oseltamivir phosphate to treat MRL/lpr mice at the onset of proteinuria.48 Unexpectedly, oseltamivir phosphate failed to significantly impact the renal or immune disease measures in those mice. They proposed that the unsuccessful therapeutic effect of oseltamivir phosphate might be due to the insufficient inhibitor effectiveness to Neu because they did not observe any significant difference in renal Neu activity at the endpoint of the study. Therefore, more specific mammalian Neu inhibitors are needed to verify its therapeutic value in LN. In 2021, this same group constructed female B6. SLE1/2/3 lupus-prone mice with genetically reduced NEU1 levels (NEU1+/−). The results demonstrated that NEU1 was responsible for mediating cytokine release by primary mesangial cells; however, NEU1 heterozygote knockout did not delay the onset or progression of the disease. They proposed that the development of only mild renal disease in the B6. SLE1/2/3 mice was an important limitation of the in vivo study, which may be due to environmental/microenvironment differences.46 The impact of the potential role of NEU1 with respect to established nephritis in lupus-prone mice needs further investigation. The above studies suggested that NEU1 might play a pathogenic role in the kidney of LN by mediating the dysfunctional glycosphingolipid metabolism and inflammation, which might be associated with disease progression and chronicity.
Our present study has some limitations. First, the sample size was not large enough. Second, the level of glucosylceramide and lactosylceramide, the breakdown product of gangliosides by NEUs, in the kidney and urine of patients with LN needs to be examined.
In conclusion, renal NEU1 expression was associated with pathological CI and worse renal prognosis in patients with proliferative LN, which requires further exploration.