Discussion
BAFF is an important B cell activating factor, involved in SLE pathogenesis and a target of the approved biologic belimumab. Consistent with prior work, we found elevated levels of BAFF in peripheral blood of patients with SLE associated with serological markers of disease activity, including complement consumption and anti-dsDNA antibodies.1 3 4 9
Although neutrophils are known to be an important source of BAFF, the potential stimuli promoting BAFF release in SLE had not been carefully explored. Given the serological findings of IC-driven disease associated with BAFF levels, as well as our prior work on IC-mediated NET formation, we hypothesised that ICs may be central in promoting BAFF release in SLE. Consistent with this hypothesis, prior studies have reported that exposure of neutrophils to bovine serum albumin-IC, after priming with G-CSF, induced the release of BAFF.11 Furthermore, Lood and Hughes showed BAFF release by neutrophils during NET formation.8
Our data revealed a reverse correlation between neutrophil counts and BAFF titres, and a positive association between increase in BAFF levels and levels of 8-OHdG DNA (oxidised DNA) and mt-COXII (mitochondrial) DNA (data not shown), further supporting the potential link between neutrophil activation/NET remnants and increased BAFF in patients with SLE.
To our knowledge, our study is the first to show that in vitro stimulation of neutrophils with disease-relevant RNP/IgG ICs induces the release of BAFF from human neutrophils. Our in vitro data suggest that this is likely an active process of BAFF release from intracellular storages, associated with neutrophil’s activation and NETosis. During this process, BAFF, released by the neutrophils, may also physically associate with the NETs.
Consistent with the release of BAFF, we found an increase of B cell survival in neutrophil/B cell co-cultures. Under the experimental conditions used, IC-stimulation did not promote significant release of other cytokines such as IL-21, IL-10, IL-6, TNF-α or CD40L, although we saw a trend towards the increased release of IL-6 (p=0.081) and TNF-α (p=0.2125) at 3 hours after IC stimulation, which may contribute to the effects of neutrophils on B cells. We also found an increase in the production of BAFF-related cytokine APRIL (data not shown); however, unlike BAFF, serum levels of APRIL did not correlate with IC levels, markers of neutrophil activation, or decrease of complement levels in patients with SLE.
Only a few published studies have explored the ability of neutrophils to activate B cells.2 12 13 Puga et al have reported on B-helper neutrophils in the splenic marginal zone, driving the activation of IgM-producing marginal zone B cells via the secretion of BAFF, APRIL and IL-21.12 More recently, Gestermann et al have shown that LL37–DNA complexes, present in NETs, can drive the activation of memory B cells and the production of anti-LL37 Abs.13 We propose that during NET formation, the extrusion of autoantigens, including LL37-DNA, oxidised mitochondrial DNA, and other mitochondrial components or neutrophil-specific enzymes,14 in combination with BAFF, could be a strong driver of autoreactive B cell responses in SLE. Despite the appearance of CD27hiCD38hi cells in co-culture conditions, we did not detect a significant anti-nuclear auto-Ab production. Different experimental conditions could explain the discrepancy of our data from Gestermann’s study. While Gestermann et al induced NET formation by anti-LL37 antibody to promote memory B cell activation and anti-DNA Ig production; in our study, we co-cultured SLE neutrophils and B cells without prior neutrophil activation. Our data, however, suggest that similar to Gestermann et al, CD27hiCD38hi cells derive from a subset of memory B cells, which are present in some, but not all, patients with SLE. Why SLE neutrophils selectively activate memory B cells, exactly what subset of memory B cells these cells correspond to, and what their Ag-specificity is, would need further in-depth analysis.
In brief, the results presented in this study support a novel mechanism in which ICs mediate NET formation and the release of BAFF. Consistent with the role of BAFF on B cells, our data support the ability of neutrophils to promote B cell activation and Ab-producing cell differentiation. Approaches to target the crosstalk between neutrophils and B cells could help inhibit pathogenic B cell responses in patients with SLE.