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unknown mechanism by which HFD may promote Tfh 
cell response and GC reactions, leading to lupus autoim-
munity and pathogenesis.

Choosing a suitable animal model for the lupus study is 
challenging because of this disease’s complex and incom-
pletely understood pathophysiology. We conducted our 
study using the MRL/lpr mouse, which exhibits the 
general clinical and histological phenotype of SLE, such 
as female sex predilection, signs of lpr (splenomegaly), 
cutaneous or vascular dysfunctional lesions, anti-dsDNA 
autoantibody production and glomerulonephritis, over 
a rapid time frame, which allows earlier assessment of 
interventions. Furthermore, the pathogenesis of auto-
immunity in MRL/lpr mice includes pathogenic mech-
anisms leading to SLE in humans, such as polyclonal 
B-cell activation and T cell-dependent autoantibody 
production, upregulation of type 2 IFN pathways and the 
proliferation of T cells due to the lpr mutation-related 
defect in Fas-mediated apoptosis of autoreactive T cells 
and B cells.22 We recognise that no single lupus-prone 
mouse model is perfect for human SLE. One potential 
limitation of the MRL/lpr mouse model is the less domi-
nant role played by type I interferons.23 Thus, further 
studies in other lupus mouse models, especially in obese 
patients, must unravel the complex relationship between 

HFD, obesity and autoimmunity in SLE. Of note, unlike 
obesity defined by BMI in humans, murine obesity may be 
defined by bodyweight increase and lipid accumulation or 
hyperlipidaemia. In our study, obesity was achieved by the 
significant bodyweight gain in the HFD group compared 
with the RD group from week 5 throughout the experi-
mental period and increased serum levels of TC and TG. 
When separated by sex, female mice fed with HFD had a 
more significant percentage of bodyweight increase than 
male mice. Male mice on both RD and HFD achieved a 
191.98%–192.98% bodyweight increase during weeks 
0–8, whereas female mice on RD only increased weight 
by 193.3% compared with 241.74% with female mice 
on HFD in the same period. Several reports have shown 
a correlation between TC and TG serum levels with 
lupus disease activity. A single-cell cross-sectional study 
showed that patients with systemic lupus have abnormally 
elevated serum triglyceride levels. In addition, elevations 
in triglyceride and serum cholesterol levels correlate with 
the elevated 24-hour urine protein:creatinine ratio and 
serum creatinine.24 Another study also showed that serum 
triglycerides might be an independent risk factor for 
systemic lupus-related kidney injury. High triglycerides 
correlate with SLE-related kidney injury, The SLE Disease 
Activity Index 2000 (SLEDAI-2K), urinary casts, blood 

Figure 5  Frequencies of GC-B cells, plasma cells, Tfh cells and ratio of Tfh:Treg cells increased in the spleens of RD and 
HFD mice. (A). Representative H&E staining of germinal centre and opal four-colour immunofluorescence stainings for GC-B 
cells (GL7 green, B220 red), plasma cells (PNA green, mouse Ig red), Tfh cells (ICOS green, CD4 red) and Treg cells (FOXP3 
green, CD4 red). DAPI counterstains were applied to all immunofluorescent staining slides. Magnification=×200. (B) Percentage 
of B cells (B220+), GC-B cells (GL7+B220+), plasma cells (PNA+B220-) in the spleens of RD and HFD mice were evaluated by 
FACS analysis (n=10 each group). (C) Frequencies of CD8+CD3+T cells, CD4+CD3+ T cells, Tfh cells (CD4+CXCR5+ICOS+), Treg 
(FoxP3+CD4+) and ratio of Tfh:Treg were determined by FACS analysis (n=10 each group). Significant differences between RD 
and HFD groups were analysed by Student t-test. *P<0.05. FACS, fluorescence-activated cell sorting; GC-B, germinal centre B; 
Tfh, T follicular helper; Treg, regulatory T cell.
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urea nitrogen level, serum creatinine and proteinuria.25 
Thus, the increases of serum lipids may involve in SLE 
pathogenesis in HFD mice.

Our study found that HFD profoundly influenced 
the development and progression of SLE autoimmune 
features in both female and male MRL/lpr mice. In 
patients with SLE, the most typical form of acute cuta-
neous lupus (known as cutaneous lupus) is a rash on the 
face, which generally affects 60%–70% of patients with 
SLE. In our study, MRL/lpr mice fed with HFD developed 
skin rashes on the face, ears and back of the neck as early 
as week 6, resulting in a significantly higher frequency of 
skin lesions and skin histological score compared with 
the RD group. In addition, HFD accelerated other char-
acteristic lupus features, including splenomegaly, protein-
uria, increased levels of anti-dsDNA antibody and total 
IgG, and increased kidney index. Male mice with HFD 
developed more significant and severe lupus features 
(skin score, proteinuria, nephropathy and anti-dsDNA 
antibody) than male mice with RD. In contrast, no signifi-
cant difference was found in female mice in the HFD and 
RD groups. This phenomenon parallels human lupus in 
which male patients (10% of patients with lupus) are like-
lier to have a severe disease (including nephritis) than 
female patients with lupus, who may have a broader range 
of lupus symptoms and complications.26 This finding 
raises the question of whether obesity plus oestrogen may 
regulate and accelerate lupus in female mice and whether 
a lack of oestrogen reduces lupus in male mice but does 
not protect against nephritis. Of note, no difference in 
glomerular cell proliferation was found between the HFD 
and RD groups, although the urinary protein levels were 
significantly elevated from week 11 to week 14 in male 
HFD mice. In human lupus nephritis, the renal histopa-
thology correlates poorly with the amount of proteinuria, 
although class V lupus membranous nephropathy typi-
cally is associated with the highest level of proteinuria. 
That is why renal biopsy is performed to determine the 
precise renal histopathology. In addition, all MRL/lpr 
mice develop lupus-like disease spontaneously. While 
we found measurable changes in some features of lupus 
earlier, the MRL/lpr mice may gradually lead to renal 
pathology regardless of experimental conditions. As a 
result, the renal pathology in female mice may be signifi-
cant in both RD and HFD groups. One may conclude that 
HFD cannot significantly increase renal disease, which is 
already advanced or active in the RD group.

Tfh cells help B cells differentiate into antibody-
producing plasma cells and memory B cells.10 12 Tfh cells 
are thought to assist B-cell activation and contribute to 
autoantibody production and SLE pathogenesis. Our 
previous data and others have shown that circulating Tfh 
cells are increased in patients with SLE and correlate with 
disease severity and plasma cell levels.14 In this study on 
MRL/lpr mice fed with RD and HFD, spleens in HFD 
mice were enlarged with increased frequencies of GC-B 
cells, plasma cells and Tfh cells confirmed by immunoflu-
orescence staining and FACS analysis. Small infiltrating 

B and T cells in the skin and kidney tissue sections were 
also observed in both RD and HFD groups (online 
supplemental figure S5). Treg is known to maintain self-
tolerance by suppressing autoreactive lymphocytes and 
regulating cellular metabolism and glucose homeostasis. 
Our study did not find a difference in Treg cells between 
RD-fed and HFD-fed MRL/lpr mice. Taken together, 
our data on comparing immune cell profiles in RD and 
HFD mice suggest a possible mechanism by which HFD 
or obesity may activate GCs, steer the differentiation 
of CD4+ T cells towards Tfh cells which promote auto-
antibody production and accelerate lupus autoimmu-
nity with low-grade inflammation in lupus-prone mice. 
Our results may only reflect partial aspects of the HFD 
response in lupus. Lupus and obesity might be intercon-
nected through other pathways to induce these immu-
nological dysfunctions in HFD-associated lupus, such as 
proinflammatory soluble mediators generated by white 
adipose tissue,27 gut microbiota,28 29 oxidative stress,30 
insulin resistance,31 increased body fat percentage and 
decreased muscle mass,32 oestrogen metabolism33 and 
vitamin D deficiency.34 Indeed, we found that serum 
MCP-1 level was significantly higher in the HFD group 
than the RD group, suggesting MCP-1 may play a role in 
HFD-associated lupus pathogenesis as observed in human 
patients with lupus by accelerating atherosclerosis and 
leading vascular damage (online supplemental figure 
S6). Thus, the altered T-cell and B-cell dysfunctions in 
our HFD-associated lupus might be only one of the down-
stream pathways interconnecting lupus and obesity. The 
distinct mechanism of how HFD induces or changes the 
immune milieu in MRL/lpr mice needs further study.

In conclusion, our data demonstrate that HFD-induced 
obesity accelerates lupus progression in MRL/lpr mice; 
active GCs and Tfh cells may be involved in this process. 
Our data may suggest, for individual patients genetically 
predisposed/prone to lupus, that HFD and obesity could 
have detrimental consequences for initiating, exacer-
bating and progressing SLE pathogenesis. Recent studies 
have shown that the immune system, including Tfh 
cells, promotes gut bacteria colonisation via IgA, which 
protects against obesity.23 It is tempting to speculate that 
the mechanism of HFD exacerbates lupus pathogenesis 
may consist of compositional shifts in gut microbiota via 
Tfh/GC-B/plasma cell axis and accelerate lupus auto-
immunity. Therefore, interventions of a healthy diet or 
interference of Tfh–GC-B cell interaction may improve 
both lupus symptoms and outcomes in genetically predis-
posed individuals with SLE.
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