Preclinical in vitro model of monocyte influence on microvessel structure in systemic lupus erythematosus

Holly Ryan, Alison Veintimilla, Christine Groso, Erika Moore

Systemic lupus erythematosus (SLE) is an autoimmune disease that dysregulates both the innate and the adaptive immune systems. Vasculitis is one of the hallmarks of SLE and has been named a leading cause of death for patients. The immune profiling of SLE vasculitis is theorised to involve monocyte modulation and recruitment of leucocytes into a given microvascular site. This in turn leads to fibrinoid changes in the vascular cell wall and inflammation. While monocyte activity has been found to result in recruitment of proinflammatory cytokines and proteolytic enzymes, resulting in atypical vasculature formation through internal and external membrane elasticity disturbances. While monocyte–microvascular interactions are critical to understanding vascular alterations in SLE, there are currently no preclinical models for the interrogation of microvascular phenotype associated with SLE.

Using a functionalised polyethylene glycol (PEG) hydrogel, we encapsulated endothelial cells, support cells and monocytes to create a preclinical model of SLE microvessel phenotype. PEG-based hydrogels are three-dimensional (3D) hydrophilic polymeric biomaterial complexes. Their high biocompatibility allows them to be good platforms for cell culture, and their high tunability has allowed for their manipulation to mimic complex biological systems, such as the extracellular matrix (ECM). PEG scaffolds functionalised with cell-adhesive peptides have demonstrated the capacity to facilitate microvessel formation. We functionalised our PEG platform by conjugating a cell-adhesive peptide, RGDS, and a cell-mediated degradable component peptide, GGGPQGI-WGQGK (online supplemental file 1). These components allow for necessary cellular adhesion as well as subsequent migration. Toll-like receptor (TLR)7/8 are endogenous pattern recognition receptors expressed in monocytes, and aid in disposal of single-stranded viral and self-RNA. TLR7/8 are proposed to be key players in the modulation of pathological microvasculature and aberrant monocyte activity in SLE. We leveraged resiquimod (R-848), a TLR7/8 ligand, to elucidate the effects of monocyte TLR7/8 pathway activation on monocyte and endothelial cells’ interactions through microvessel formation in vitro. Additionally, we encapsulated SLE and healthy control (HC) primary monocytes to assess microvessel formation within our hydrogel platform.

We first evaluated cell viability within the hydrogel system with and without treatment with R-848 (online supplemental file 2). We then investigated microvessel formation in our preclinical model to quantify the interaction between monocytes and microvessels. Leveraging confocal imaging, we quantified branch points and segmentation of observed microvessels as a measure of aberrant microvasculature. We found that monocyte stimulation with TLR7/8 agonist and monocytes from patients with SLE did alter microvessel structure, specifically in the number of structures containing at least one branching point. Conditions tested within this work include monocytes isolated from HCs with/without R-848, and monocytes from patients with SLE. Differences between groups are in regard to either R-848 treatment or disease state; additional cells used to formulate microvessels (endothelial cells and pericytes) remained consistent throughout.

Monocytes were obtained from patient samples and isolated from peripheral blood mononuclear cells. For studies involving interrogation of TLR7/8, monocytes used were from HCs. In studies for visualising SLE in a hydrogel platform, both HCs and SLE donor monocytes were used. These monocytes were then co-encapsulated with human umbilical vein endothelial cells and pericytes into a
A photocrosslinked polymer hydrogel composed of PEG and previously mentioned ECM peptides as established within past literature. These hydrogels were cultured in media with or without R-848. Hydrogels were stained with CD31, an endothelial marker, and DAPI, a nuclear marker. Confocal images of these immunostains were taken, made into binary images and skeletonised to facilitate analysis of microvessel structures. Maximum-intensity Z-stack projections were made to allow for tracing of endothelial structures and their branches (figure 1B,C). Figure 1A summarises this workflow and a more detailed methodology is described in online supplemental file 3.

Microvessel segments were analysed based on the number of segments per condition having at least one branch. Segments with only two endpoints and no branching points were excluded from analysis (figure 1D). After treatment with R-848, the number of endothelial segments in each Z-stack having at least one branch point increased in the hydrogels including monocytes, but not in the hydrogels without monocytes (figure 1D). This suggests that activation of TLR7/8 in monocytes, and not off-target effects of R-848 on endothelial cells and supporting pericytes, is responsible for altered branching patterns. TLR activation in macrophages leads
to an inflammatory, or M1, state, and this cell type has been shown previously to cause significant alterations in branching patterns of 3D-modelled vasculature. The presence of monocytes at baseline, regardless of treatment with R-848, also slightly increased the number of endothelial segments with branches (figure 1D).

Representative images of hydrogels made with monocytes from patients with SLE (n=7) versus HC donors (n=3) are shown in figure 1E. Figure 1F shows a significant increase in the number of segments with at least one branch in the hydrogels with monocytes from patients with SLE compared with those of hydrogels with monocytes from HC donors. These observed differences between SLE versus HCs are present even in the presence of certain medication treatments disclosed in online supplemental file 4. This increase suggests that the monocytes may be at least partially responsible for microvessel dysfunction seen in SLE. In addition, there was an observed increase in branched segments in the SLE condition (figure 1F), emphasising that monocyte modulation may play an important role in aberrant microvessel formation.

These results demonstrate a proof-of-concept preclinical model of monocyte-mediated altered microvessel formation as a result of TLR 7/8 targeting. This work also demonstrates that a hydrogel platform can uphold an SLE phenotype within an in vitro setting for benchtop investigations. Further investigation of this model will look towards confirming more attributes related to SLE microvasculature, such as cytokine recruitment. Given the complexity of SLE, much of the aetiology and disease progression is still unknown, and pinpointing causal effects has proven to be challenging. This model can aid in unpacking confounding factors of symptom onset and severity, such as the environment, genetics, hormonal deviations, viral exposure and ancestry.

Twitter Erika Moore @DrErikaMoore

Acknowledgements The authors would like to give special thanks to Erin Hudson for all phlebotomy work and Lara Larson for editing aid. The authors would also like to express gratitude to donors who contributed to this study as well as the University of Florida Health Rheumatology Clinic and Dr Mark Segal. All schematics created with BioRender.com.

Contributors Conceptualisation—HR and EM. Methodology—HR. Software—HR. Validation—HR. Formal analysis—HR. Investigation—HR, AV and CG. Resources—EM. Data curation—HR. Writing (original draft preparation)—HR, AV and CG. Writing (review and editing)—AV and EM. Visualisation—AV. Supervision—EM. Project administration—EM. Funding acquisition—EM.

Funding This research was funded by the Lupus Research Alliance (grant number P1266354). The authors gratefully acknowledge funding from the National Institutes of Health (NCATS 1KLTR001429) (EM).

Competing interests None declared.

Patient consent for publication Not required.

Ethics approval This study involves human participants and was conducted according to the guidelines of the Declaration of Helsinki, and approved by the Institutional Review Board of the University of Florida (protocol code 202001085, approved 29 May 2020). Participants gave informed consent to participate in the study before taking part.

Provenance and peer review Not commissioned; externally peer reviewed.

Supplemental material This content has been supplied by the author(s). It has not been vetted by BMJ Publishing Group Limited (BMJ) and may not have been peer-reviewed. Any opinions or recommendations discussed are solely those of the author(s) and are not endorsed by BMJ. BMJ disclaims all liability and responsibility arising from any reliance placed on the content. Where the content includes any translated material, BMJ does not warrant the accuracy and reliability of the translations (including but not limited to local regulations, clinical guidelines, terminology, drug names and drug dosages), and is not responsible for any error and/or omissions arising from translation and adaptation or otherwise.

Open access This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

ORCID iDs
Holly Ryan http://orcid.org/0000-0001-9997-1410
Alison Veintimilla http://orcid.org/0009-0003-4648-7539
Erika Moore http://orcid.org/0000-0003-2192-6147

REFERENCES