Background Advances in single cell genomics have illuminated aberrant cells with striking transcriptional differences in patients with systemic lupus erythematosus compared to healthy individuals. However, it is not clear whether these aberrant cells are directly responsible for pathology or bystanders that have become aberrant in response to an inflammatory environment. This is an important distinction because safer and more effective treatments rely on identifying and eliminating pathogenic cells. The goal of this study was to molecularly characterise the cells that produce pathogenic autoantibodies and determine how they differ to their normal counterparts.

Methods A multi-omics approach was employed to identify pathogenic autoreactive B-cells, which linked mass spectrometry-based sequencing of serum autoantibody with massively parallel single cell sequencing was performed to compare gene expression and mutation in pathogenic and normal B-cells.

Results Rare circulating B-cells making pathogenic autoantibodies were found to comprise clonal trees accumulating mutations in immunoglobulin regions. The pathogenic cells had a distinct gene expression profile similar to that previously observed in CD21-low atypical memory B-cells.

Conclusions The detailed analysis of pathogenic B-cells reveals insights into disease pathology and therapeutic targets for precision medicine approaches.

REFERENCE

Background Administration of cytotoxic and immunosuppressive agents are well established treatment of systemic lupus erythematosus. However, the usage of these drugs shows frequent side effects. Therefore, finding new treatment option are necessary. Mucus secretion from snail (Achatina Fulica) contain glycosaminoglycans including heparan and acharan sulfates, which known to accelerate the inflammatory process and replace the damaged glomerular filtration membrane in renal interstitial fibrosis. This study aimed to determine the effect of snail mucus on levels of heparan sulfate in mice model of lupus nephritis.

Methods Experimental study uses posttest-only group design. The control group was male Balb/C mice injected with 0.5 cc NaCl 0.9% I.P while mice model of nephritis lupus injected with 0.5 cc Pristane I.P. Heparin sulfate group also showed higher level of heparan sulfate compared to control group, although not statistically significant (p = 0.257).

Conclusions Achatina fulica mucus may increase heparan sulfate level in mice model of lupus nephritis.

REFERENCE

Background Recent advances in the treatment of systemic lupus erythematosus (SLE) have focused on inducing specific immune tolerance to avoid complications from the long-term use of immunosuppressive drugs. Dendritic cells (DCs) are the most potent antigen-presenting cells that have multifaceted functions in the control of immune activation and immune tolerance. Since altered tolerogenicity of DCs contributes to the development and pathogenesis of SLE, DC-targeted therapies aimed at inducing self-tolerance have become of great importance for the treatment of SLE and autoimmune diseases.

REFERENCES
1. Phurvat Khiewkamrop, A, Chomsavan-Manipuntee, S, Chomnuk Kaewnaemuang, N, Numpun Insin, R, Rudawat Winawarichkul, N, Natiya Hirankram, K, Pitchayongpitirak, S, Graduate School, Chulalongkorn University, Bangkok, Thailand; Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand; 3Department of Microbiology, Faculty of Liberal Arts and Science, Kasetsart University, Pathum Thani, Thailand; 4Department of Immunology, Immunology Research Unit (TRIU), Bangkok, Thailand; 5Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; 6Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand; 7Department of Microbiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand; 8Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.


A119


A119