locus has powerful common variant associations with SLE risk with odds ratio = 1.5 and p < 10^{-20} in all human ancestries and also has an association, though not necessarily identical to SLE, with rheumatoid arthritis, primary biliary cirrhosis, Behcet’s Disease, Sjögren’s syndrome, progressive systemic sclerosis, and type 1 diabetes.

**Methods** Genome wide association studies of SLE, Bayesian and frequentist fine mapping methods, DNA affinity purification assays, and electrophoretic mobility shift assays.

**Results** We are attempting to identify the causal variants and determine the mechanism for SLE disease risk at this locus. Our data suggest that the risk haplotype alters the expression of mRNA from both STAT1 and STAT4. Application of frequentist and Bayesian methods restrict the plausibly causal variants to four possibilities in introns 4 and 5 of STAT4 under the assumption that the association observed across human ancestries is being driven by the same causal variants. Three of these four polymorphisms are predicted to alter the binding of a specific transcription factor, leading to the hypothesis that the same transcription factor is operating at multiple sites in a risk haplotype. We have data suggesting differential and allele preferential binding of the transcription factor at one variant with evaluation of the others in process. This may possibly be the first discovered example of the phenomenon of multiple transcription factor binding on multiple variants of a risk haplotype.

**Conclusion** In general, genome wide association studies (GWASs) provide powerful evidence of the presence of a genetic variation altering phenotype risk without revealing what the specific responsible variant is among those in a statistical dead heat for causation, in which cell type(s) or stage(s) of differentiation in which the risk difference is relevant, or what the molecular mechanism might be. We have work underway to reveal these details for lupus loci, initially concentrating on IRF5, STAT1-STAT4, and ET31. The STAT1-STAT4 association with SLE can be isolated to involve only a few variants, which are predicted to have curiously similar transcription factor binding behaviour.

**Background** Systemic lupus erythematosus (SLE) is a heterogeneous autoimmune disease with a strong genetic component. Dozens of SLE-associated loci have been identified by genome-wide associated studies (GWASs) and included in the ImmunoChip for fine-mapping.

**Materials and methods** Using ImmunoChip, we assessed case-control subjects including Chinese, European Americans (EA) and African Americans (AA) for association with SLE. Subsequently, we carried out trans-ancestral mapping and resequenced the complex: GTF2IRD1-GTF2I-NCF1 region on 7q11.23 rather than SLE-associated GWAS loci. This association was confirmed in EA (OR = 1.37, P = 2.5 × 10^{-5}) but not in AA. By trans-ancestral mapping and sequencing, we identified R90H of NCF1, a neighbouring gene of GTF2I encoding the p47phox subunit of NADPH oxidase, as a highly plausible causal variant. R90H was associated with SLE in East Asians (OR = 3.47, Pmeta = 3.0 × 10^{-16}), EA (OR = 2.11, Pmeta = 7.0 × 10^{-8}) and AA (OR = 1.91, P = 7.2 × 10^{-3}), and in conditional test R90H eliminated SLE-associated signals within the GTF2IRD1-GTF2I region including rs73366469. Furthermore, R90H was dose-dependently associated with early age of onset in Korean (P = 0.011) and EA (P = 0.012) patients with SLE. In addition to SLE, R90H was associated with seropositive rheumatoid arthritis (RA) in Koreans (OR = 1.66, P = 1.2 × 10^{-6}) and primary Sjögren’s syndrome (SS) in EA (OR = 1.72, P = 5.8 × 10^{-7}). The conserved arginine 90 to histidine substitution located in the PX-binding domain of p47phox is predicted deleterious, which is supported by a report showing R90H results in reduced reactive oxygen species (ROS) production.

**Conclusions** We identified R90H of NCF1 as a novel risk variant for multiple autoimmune diseases, highlighting the pathogenic role of reduced ROS production in developing autoimmune diseases.

**Abstracts**

**GG-04**

**A MISSENSE MUTATION IN NEUTROPHEL CYTOSOLIC FACTOR 1 (WCF1) IS ASSOCIATED WITH SUSCEPTIBILITY TO MULTIPLE AUTOIMMUNE DISEASES**

1,2,3,4,5Jian Zhao, 2,3Yian Deng, 2,3Jennifer A Kelly, 2,3Kwanguwo Kim, 2,3So-Young Bang, 2,3Hye-Soon Lee, 2,3Yuan-Zhen Li, 2,3Shin Joon Kang, 2,3Kathy Misser Salis, 3Bevra H Hahn, 1Jennifer M Grossman, 5Sang-Cheol Bae, 4Patrick M Gaffney, 4,5Nan Shen, 1Young Bang, 7Hye-Soon Lee, 8Quan-Zhen Li, 8Edward K Wakeland, 4,7Kathy Moser Sivils, 3,8,9,10,11Betty P Tsoa*.

1Division of Rheumatology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California 90095, USA; 2Division of Rheumatology and Immunology, Department of Medicine, University of South Carolina, Charleston, South Carolina 29425, USA; 3Shanghai Institute of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, China; 4Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, USA; 5Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul 138-792, Korea; 6Department of Immunology, University of Texas Southwestern Medical Centre, Dallas, Texas 75235, USA; 7Department of Pathology, University of Oklahoma Health Sciences Centre, Oklahoma City, Oklahoma 73104, USA; 8Institute of Health Sciences, Shanghai Institute for Biological Sciences (SIBS) and Shanghai Jiao Tong University School of Medicine (SJU-SM), Chinese Academy of Sciences (CAS), Shanghai 200025, China; 9State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China; 10The Centre for Autoimmune Genomics and Aetiology (CAGE), Cincinnati Children’s Hospital Medical Centre, Cincinnati, Ohio 45229, USA; 11Collaborative Innovation Centre for Translational Medicine at Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.

**GG-05**

**ATAC-SEQ PROFILING REVEALS CELL-TYPE SPECIFIC EPIGENETIC FEATURES OF SYSTEMIC LUPUS ERYTHEMATOSUS (SLE)**

Richard C Pelikan, Neelakshi Jog, Melissa Bekah, Joel Guthridge, Judith James, Patrick Gaffney*.

Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA.

10.1136/lupus-2016-000179.57
chromatin accessibility “peaks” were identified with MACS2. For each cell type, we identified the consensus set of epigenetically active peaks across all 14 subjects. We conducted enrichment tests of identified loci using the GREAT tool and performed differential accessibility analysis using the edgeR package in R. Transcription factor binding motif enrichment and overlaps with known SLE risk haplotypes were also determined.

Results Chromatin accessibility profiles among the three cell types shared common features as well as peaks specific to each cell-type profile. The peaks unique to each profile were enriched in genomic loci specific to their cellular function as well as their known immunologic molecular signatures in SLE. Quantitative analysis of differential chromatin accessibility loci which discriminate between individuals with SLE and healthy controls patients with high versus low disease activity. Motif analysis revealed that many consensus peaks occupy binding sites of cohesin complex subunits, suggesting that long-range chromatin interactions may mediate immune responses that drive SLE progression. In addition, 320 SLE risk SNPs were located within an open chromatin peak suggesting these as SNPs candidates for functional impact.

Conclusions Our analysis suggests that chromatin profiling may have power to differentiate patients from controls as well varying extremes of disease activity and can pinpoint putative functional SNPs. Additional insight will be gained from further refinement of immune cell compartments. Future studies will focus on long-range interactions driving differences in chromatin accessibility and integrating these data with transcriptome data. We expect this approach to expand our knowledge of how regulatory networks in specific cells and cell states drive SLE progression.

Acknowledgements This work was supported by the following grants from the National Institutes of Health: NIAID: U19AI082714; NIAMS: AR056360, AR063124; NIGMS: GM110766

GG-07 SLE RISK HAPLOTYPES ARE ASSOCIATED WITH DEVELOPMENT OF SEROLOGIC AUTOIMMUNITY IN HEALTHY INDIVIDUALS

Pritivi Raj, Quan-Zhen Li, Igor Dzamarov, Nancy J Olsen, Kathy Skuls, Jennifer Kelly, Judith A James, Bernard Laxaweys, Peter Gregersen, Karen Cesualleti, David Karp*

Background Approximately 60 loci are associated with SLE in genotyping studies. These loci impact several pathways in the immune response. ANA are one of the earliest features of lupus, preceding the onset of clinical symptoms by many years. The genetic risk factors that underlie the development of serological autoimmunity are unknown. A genome-wide association study was undertaken to understand the genetics of ANA development.

Materials and methods Serum and DNA were collected from 2,635 healthy individuals with no personal history of autoimmunity. Antinuclear antibodies were detected using an ELISA to human nuclear extract (INOVA). Sera from 724 individuals (ANA−, ANA+, and SLE) were assayed by protein microarray quantifying IgM and IgG responses to 96 human autoantigens. A nested cohort of 1,969 subjects consisting of all the ANA+ Causcasian individuals and age/gender matched ANA− controls were genotyped using the ImmunoChip SNP array.

Results In 2,635 healthy individuals, 16.2% had moderate and 8.0% had high levels of IgG antinuclear antibodies. High titer ANA was almost exclusively seen in female subjects (OR (CI): = 1.6 (1.1–2.1), p = 0.003). Age was not associated with the presence or titer of ANA. On the autoantigen microarray, ANA+ healthy individuals had a high prevalence of antibodies to non-nuclear and cytoplasmic antigens, while subjects with SLE predictably produced antibodies to a variety of nuclear antigens. A quantitative genetic association test with ANA identified genomic loci associated with high ANA phenotype. HLA was second strongest signal (p = 6.2 × 10^-4). The frequencies of the SLE risk haplotypes at STAT4, TNFAIP3, BLK, BANK1, NCF2, and MNAT2 were also significantly (p<0.05) increased in the ANA high positive group compared to ANA negative healthy subjects. On the other hand, SLE risk haplotypes in ITGAM, UBE2L3, IRF3-TNPO3 loci were only high in the SLE group, suggesting their main role in a transition to clinical disease.