chromatin accessibility “peaks” were identified with MACS2. For each cell type, we identified the consensus set of epigenetically active peaks across all 14 subjects. We conducted enrichment tests of identified loci using the GREAT tool and performed differential accessibility analysis using the edgeR package in R. Transcription factor binding motif enrichment and overlaps with known SLE risk haplotypes were also determined.

Results Chromatin accessibility profiles among the three cell types shared common features as well as peaks specific to each cell-type profile. The peaks unique to each profile were enriched in genomic loci specific to their cellular function as well as their known immunologic molecular signatures in SLE. Quantitative analysis of differential chromatin accessibility loci which discriminate between individuals with SLE and healthy controls patients with high versus low disease activity. Motif analysis revealed that many consensus peaks overlap binding sites of cohesin complex subunits, suggesting that long-range chromatin interactions may mediate immune responses that drive SLE progression. In addition, 320 SLE risk SNPs were located within an open chromatin peak suggesting these as SNPs candidates for functional impact.

Conclusions Our analysis suggests that chromatin profiling may have power to differentiate patients from controls as well varying extremes of disease activity and can pinpoint putative functional SNPs. Additional insight will be gained from further refinement of immune cell compartments. Future studies will focus on long-range interactions driving differences in chromatin accessibility and integrating these data with transcriptome data. We expect this approach to expand our knowledge of how regulatory networks in specific cells and cell states drive SLE progression.

Acknowledgements This work was supported by the following grants from the National Institutes of Health: NIAID: U19AI082714; NIAMS: AR056360, AR063124; NIGMS: GM110766

GG-06 SINGLE CELL GENE EXPRESSION STUDIES IN LUPUS PATIENT MONOCYTES REVEAL NOVEL PATTERNS REFLECTING DISEASE ACTIVITY, INTERFERON, AND MEDICAL TREATMENT

Zhangbo Jin, Wei Fan, Mark A Jensen, Jessica M Vsetecka, Shreyasee Amin, Ashima Makol, Floranne Ernste, Thomas Osborn, Kevin Moder, Prithvi Raj, Quan-Zhen Li, Igor Dzamarov, Nancy J Olsen, Kathy Sklits, Jennifer Kelly, Judith A James, Bernard Lauwerys, Peter Gregersen, Karen Ceriseleti, David R Karp, Edward K Wakeland, Department of Immunology, University of Texas Southwestern Medical Centre, Dallas, TX USA; Department of Medicine, Penn State Hershey Medical Centre, Hershey, PA USA; Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, OK USA; Pôle de pathologies rhumatismales, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium; Center for Genomics and Human Genetics, The Feinstein Institute for Medical Research, Manhasset, NY USA; Benaroya Research Institute, Seattle, WA USA; Department of Medicine, University of Texas Southwestern Medical Centre, Dallas, TX USA

10.1136/lupus-2016-000179.59

Background Our previous studies have shown that different cell types from the same sample demonstrate diverse gene expression, and important findings can be masked in mixed cell populations. In this study, we examine single cell gene expression in SLE patient monocytes and determine correlations with clinical features.

Materials and methods CD14+CD16− classical monocytes (CLs) and CD14dimCD16+ non-classical monocytes (NCLs) from SLE patients were purified by magnetic separation. The Fluidigm single cell capture and rt-PCR system was used to quantify expression of 87 monocyte-related genes.

Results Both CLs and NCLs demonstrated a wide range of expression of IFN-induced genes, and NCL monocytes had higher IFN scores than CL monocytes. Unsupervised hierarchical clustering of the entire data set demonstrated two unique clusters found only in SLE patients, one related to high disease activity and one related to prednisone use. Independent clusters in the SLE patients were related to disease activity (SLEDAI 10 or greater), interferon signature, and medication use, indicating that each of these factors exerted a different impact on monocyte gene expression that could be separately identified. A subset of anti-inflammatory gene set expressing NCLs was inversely correlated with anti-dsDNA titers (rho = −0.77, p = 0.0051) and positively correlated with C3 complement (rho = 0.68, p = 0.030) in the SLE patient group.

Conclusions Using single cell gene expression, we have identified unique gene expression patterns that reflect the major clinical and immunologic characteristics of the SLE patients which are not evident in bulk cell data, supporting the critical importance of the single cell technique.
Conclusions
As has been seen in previous cohorts, a quarter of healthy individuals in this study made antinuclear antibodies, often at high titers. ANA testing, however, underestimates the repertoire of autoantibodies in these individuals. Healthy individuals who react in ANA testing produce antibodies against both non-nuclear and cytoplasmic antigens while SLE patients react to the classical RNA and DNA associated proteins. There is genetic risk for the development of ANA that includes many of the previously documented SLE risk haplotypes. However, other genetic associations are specific for SLE, suggesting distinct risk factors for ANA and for lupus.

GG-08 TRANSAНЕСТРАL МАРКИНГ НАД НЕРОГЕНОЗНЮСНІЙ ЛУПЕС ЄРІТМЕТОСУСІ

1Carl D Langefeld*, 2Robert Graham, 3Patrick M Gaffney, 4Timothy J Vye. 1Center for Public Health Genomics and Department of Biostatistical Sciences, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA; 2Human Genetics, Genentech Inc, South San Francisco, California, USA; 3Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA; 4Divisions of Genetics and Molecular Medicine and Immunology, Infection and Inflammatory Diseases, King’s College London, Guy’s Hospital, London, SE1 9RT, UK

Background
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease that affects multiple organs, and disproportionately affects women and individuals of non-European ancestry. Here, we report the results of genotyping individuals of European Ancestry (EA), African American (AA), and Hispanic (Amerindian) American ancestry (HA) on the Immunochip (196,524 polymorphisms: 718 small insertions deletions, 195,806 SNPs).

Methods
Genotype calling was completed in multiancestral batches (AA: 2,970 cases, 2,452 controls; EA: 6,748 cases, 2,016 controls). Admixtures were estimated using the program ADMIXTURE. To test for an association between a SNP and case/control status within an ancestry, a logistic regression analysis was computed adjusting for admixture factors as covariates. Transancestral meta-analysis was computed using the inverse normal method, adjusting for HLA alleles, and 7 established regions more sharply informative for 22 additional SLE-associated regions that were independent from the discovery set localised by transancestral mapping or novel to these ancestries adjusting for HLA alleles, and 7 established regions more sharply informative for 22 additional SLE-associated regions that were independent from the discovery set localised by transancestral mapping or novel to these ancestries.

Results
In total, 9, 58, and 6 distinct non-HLA regions had P < 1x10E-6 (Bonferroni threshold) for the AA, EA, and HA cohorts, respectively. The three-ancestry meta-analysis was partic-

P < 1x10E-6 (Bonferroni threshold) for the AA, EA, and HA cohorts, respectively. The three-ancestry meta-analysis was performed using the inverse normal method, weighted by sample size. The EA SLE-risk allele genetic load was computed as the weighted (log of the odds ratio (OR)) and unweighted sum of the number of EA risk alleles. The genetic load was computed in an independent set of EA 2000 cases and 2000 controls, and AA and HA samples. Individuals whose genetic load (risk allele count) was in the lower 10% of the count distribution were the reference group.

Results
In total, 9, 58, and 6 distinct non-HLA regions had P < 1x10E-6 (Bonferroni threshold) for the AA, EA, and HA cohorts, respectively. The three-ancestry meta-analysis was particularly informative for 22 additional SLE-associated regions that met P < 5x10E-8: 11 novel regions, 3 published regions now genome-significance, a complex multigenic region identified by adjusting for HLA alleles, and 7 established regions more sharply localised by transancestral mapping or novel to these ancestries.

Genetic load was strongly predictive of SLE status in the 2000 EA cases/controls that were independent from the discovery set (ORunweighted > 30 and ORweighted >100). There was a greater than additive effect in the log(OR) (i.e., β parameter denoting slope) for the highest quarter of the genetic load range, suggesting the cumulative effect is greater than the sum of the individual effects (cumulative hit hypothesis). HA and AA showed markedly smaller ORs (between 3 and 10), reflecting a reduced predictive ability of EA-identified SLE risk loci in non-EA populations and the lack of capturing non-EA SLE risk loci on the Immunochip.

Conclusion
The multiancestral analysis of the Immunochip data identified numerous novel SNP associations. The genetic load leads us to posit a cumulative hit hypothesis, where the cumulative effect is greater than the sum of the individual alleles’ effects.

GG-09 COMPARATIVE ANALYSIS OF GENE EXPRESSION IN LUPUS-AFFECTED TISSUES REVEALS COMMON AND DISPARATE PATHWAYS OF INFLAMMATION

1Amrie Grammer*, 2Sarah Heuer, 3Robert Robl, 4Prathyusha Badali, 5Suzhina Madamanchi, 6Matthew Kretzler, 7Celine Berthier, 7Benjamin Chong, 8Laurie Davis, 9Bernard Lauvrens, 10Nicole Catalina, 11Peter Lipsky. 1RUTEN AND AMPEL BiosoLutions, U. of Virginia Research Park, Charlottesville, VA; 2Molecular Nephrology Research Lab, U. of Michigan; 3Depts. Dermatology and Internal Medicine, UTSh Med. Ctr., Dallas, TX; 4UL. Catholique de Louvain, Brussels

Background
Immunologic mechanisms causing tissue damage in autoimmune diseases such as SLE are not fully understood. The hypothesis to be tested is that gene expression analysis of lupus-affected tissues will generate novel insights into targets of immunological intervention.

Materials and methods
To gain additional insight, gene expression profiles obtained from lupus affected skin, synovium and kidney were obtained, compared to meta-analysed data obtained from active lupus B, T and myeloid cells, and cross-referenced to various pathway analytic tools including Molecular Signature (MS)-Scoring, Ingenuity Pathway Analysis® Upstream Regulator (IPA®-UR) analysis, and Library of Integrated Network of Cellular Signatures (LINCS).

Results
More than 300 arrays from lupus patients and appropriate controls were analysed to determine differentially expressed (DE) genes [8279 discoid lupus skin, 5465 synovial lupus arthritis, 6381 glomerulus (G) lupus nephritis, 5587 tuberculosis in situ (TI) lupus nephritis]. Notably, the majority of lupus affected tissue DE genes were detected in more than one tissue and 439 were differentially expressed in all tissues. Tissue lymphocyte infiltration was documented by cell markers as well as by published unique gene expression signatures (BIG-C®). Common up-regulated transcripts in affected tissues displayed a variety of functions including pattern recognition receptors, p38/MAPK14 activation, endothelial endocytosis, and TLR activation. Unique targets of intervention were discovered when up-regulated transcripts in all lupus tissues were cross-referenced to molecular pathway and drug interaction databases. Canonical signalling pathways, published to be important for lupus pathogenesis, such as CD40L-CD40, IL-6, and IL-12/23 were visualised in IPA. Both MS®-scoring and IPA®-UR analysis predicted that signalling mediated by CD40 and IL12R occur in lupus skin, synovium and kidney glomeruli. LINCS connectivity analysis revealed the effect of in vitro knockdown of ligand-receptor pairs and compared the genes affected with lupus tissue DE lists. Lupus nephritis (LN) kidney glomeruli received a LINCS connectivity score of ~77 for CD40, implying that DE genes in this tissue have a high likelihood of being regulated by CD40-induced signalling. Skin and lupus nephritis kidney glomeruli received LINCS connectivity scores of ~73 and ~97, respectively, for the key signalling molecule required for IL6 signalling, IL6ST/gp130. All lupus-affected tissues had negative connectivity scores (skin, ~98; synovium, ~89; LN glomeruli, ~91 and LN TI, ~87) for IL12a. Examination of curated functional groups from the STRING output of pathway database.