common up-regulated transcripts in lupus tissue using IPA’s Bio-Profiler® function predicted therapeutic targets and drugs for all three ligand-receptor pairs examined by MS®-scoring, IPA®-UR and LINCS.

Conclusions This approach demonstrated that there are pathways common to all lupus tissue, and there are pathways involved in inflammatory response of some but not all tissues. Further analysis should generate a model of lupus immunopathogenesis and could identify therapies that may be useful in all lupus patients versus those with involvement of specific tissues.

GG-10 IMAGINE SLE: I INTERNATIONAL MULTI-SITE ASSESSMENT OF GENETICS AND INFLAMMATION IN EARLY ONSET AND FAMILIAL SYSTEMIC LUPUS ERYTHEMATOSUS

1Laura B Lewandowski*, 2Christian Scott, 3Diana Gómez-Martin, 4Earl D Silverman, 5Ivona Aksentijevich, 6Richard M Siegel, 7Lisa G Rider, 6Sarfaraz Hasni, 1Marina J Kaplan.

Materials and methods Paediatric SLE patients at sites in the USA, Canada, Mexico, and South Africa will be recruited. Exome capture/sequencing will be performed on patients with SLE. Genetic variants which may give insight into molecular pathways contributing to SLE.

Results We currently have access to 30 pSLE patients in the US, 75 pSLE patients in SA, 200 pSLE patients in Mexico, and 500 pSLE patients in Canada from which to recruit patients. We anticipate analysis of 160 samples (20 patient/parent trios at NIH, 50 in Canada) to be complete at the time of presentation. We expect to recruit 30 SA trios, 135 Mexican trios, 40 US trios, and 200 Canadian trios during the total course of the study. Novel rare variants identified will be reviewed.

Conclusions Novel rare variants identified will be reviewed.

GG-11 SYSTEMIC LUPUS ERYTHEMATOSUS (SLE) SUSCEPTIBILITY LOCI IN ASSOCIATION WITH AGE OF SLE DIAGNOSIS AND SUBPHENOTYPES OF SLE IN AN ANCESTRALLY COMPLEX CHILDHOOD-ONSET SLE LONGITUDINAL COHORT

1Mariana J Kaplan, 2Diana Gómez-Martin, 3Christiaan Scott, 4Earl D Silverman, 2,5Linda T Hiraki*.

Background Recent large scale meta-genome-wide association studies (GWAS) of systemic lupus erythematosus (SLE) in Europeans have confirmed and identified new loci (Kenthem et al. Nat Gen 2015). Up to 20% of those affected with SLE are diagnosed in childhood (cSLE). There is evidence for a higher burden of SLE susceptibility loci in those diagnosed in childhood compared to those diagnosed as adults. However, few studies have investigated how known susceptibility loci influence the timing of disease onset and sub-phenotype manifestations in cSLE across different ancestral groups.

Materials and methods We will examine SLE-susceptibility single nucleotide polymorphisms (SNPs) individually and in a weighted genetic risk score (GRS), for association with age of SLE diagnosis and sub-phenotype (eg: lupus nephritis (LN), dsDNA, CNS disease). We used a population of children diagnosed and followed for cSLE at the Hospital for Sick Children, Toronto (≥4/11 ACR classification criteria and/or ≥4/11 SLICC classification criteria) between 1982–2014. Participants were genotyped on the Illumina Imuonochip. We examined ancestry by comparing with the 1000 genomes data using population stratification and ADMIXTURE. We will use additive genetic models to test the association of each SLE SNP with age of SLE diagnosis (linear regression), and the presence of subphenotypes (logistic regression) in the total cohort, and stratified by ancestral group.

Results In our cohort of 342 cSLE patients, the median age of SLE diagnosis was 13 (interquartile range: 10–15) years and the median duration of follow-up was 4.1 (IQR 2.7, 6.1) years. 44% of participants were of a single Ancestry (>95% of the genome from a single ancestral group: 16% European, 23% East Asian, 4% African), and 56% were admixed (genome comprised of more than one ancestral group).

Conclusions Our findings will provide insight into the generalizability of a SLE susceptibility GRS across ancestral groups, as it relates to age of diagnosis and subphenotypes of SLE in a cSLE population. Replication and meta-analyses in independent cohorts are planned.
Acknowledgements Andrew D. Paterson, Genetics and Genome Biology, Research Institute, the Hospital for Sick Children, Toronto, Canada
John Harley, Centre for Autoimmune Genomics and Aetiology, Cincinnati Children’s Hospital Medical Centre, Cincinnati, USA

Funding for this work was provided by:
NIH R01 AI070983
NIH K24 AI078004
NIH T32 AR007534
University of Colorado School of Medicine
University of Colorado Department of Medicine
Charley J. Smyth Endowed Chair for Rheumatology Research

Background Systemic lupus erythematosus is a multisystemic autoimmune disease characterised by the production of autoantibodies to nuclear antigens. We have identified a variant in intron 1 of complement receptor 2 (CR2/CD21) that is associated with decreased risk of lupus (rs1876453; $P_{meta} = 4.2 \times 10^{-4}$, OR = 0.85). Its effect is strongest in subjects with anti-dsDNA antibodies (case-control $P_{meta} = 7.6 \times 10^{-7}$, OR = 0.71; case-only $P_{meta}1.9 \times 10^{-4}$, OR = 0.75), suggesting a preferential association with this endophenotype. rs1876453, located 97 nucleotides from the 5’ end of CR2 intron 1, alters the binding of multiple protein complexes, including one containing CTCF, and is associated with increased B cell-specific expression of the adjacent gene, complement receptor 1 (CR1/CD35). The transcriptional mechanism connecting these observations remains unclear, and we hypothesised that long noncoding RNA (lncRNA) play a role.

Materials and methods cDNA was generated by reverse transcription from RNA purified from the Raji B cell line as well as from human tonsil and spleen, peripheral blood mononuclear cells, and purified primary B cells. PCR was performed using 5’ primers that targeted spliced exons from known lncRNA sequences in the intergenic region 5’ of CR2, in the CR2 gene, and in CR1 intron 1. Quantitative PCR of primary B cell transcripts was performed using cDNA transcribed using random primers and MultiScribe reverse transcriptase (Applied Biosystems), customised lncRNA primers and probe that targeted spliced exons, Taqman assays for U6 snRNA and b-actin mRNA, and the Applied Biosystems 7500 Real-Time PCR System. Relative expression levels of lncRNA, normalised to either U6 snRNA (A) or b-actin (B), were calculated using the comparative C_T method. P values were determined using a two-tailed Student t test and a p value of <0.05 was considered significant.

Results We confirmed the presence of annotated lncRNAs in the CR2-CR1 genomic region in various cell types. One annotated lncRNA located downstream of rs1876453 in CR2 intron 1 was readily detected in B cells. We determined the allele-specific expression of this lncRNA by quantitative RT-PCR and found that it was ~3-fold increase in individuals with the minor protective allele at rs1876453 (p = 0.0025 normalised to U6 snRNA and p = 0.0054 normalised to beta-actin).

Conclusions Our data suggest that the generation of pathogenic autoantibodies associated with early, active, and severe lupus is modified by expression of a CR2 lncRNA that appears to have long-range effects. Examination of its mechanism and effects may therefore reveal a novel target for the treatment of lupus.

Acknowledgements This study was approved by the Colorado Multiple Institutional Review Board (Protocol 06-0301).

Abstracts

GG-12 ALTERED EXPRESSION OF LONG NONCODING RNA IS ASSOCIATED WITH A LUPUS-ASSOCIATED VARIANT IN COMPLEMENT RECEPTOR 2

Brendan M Giles, Bryan T Nycz, Susan A Boackle*. Division of Rheumatology, University of Colorado School of Medicine, USA

10.1136/lupus-2016-00179.64

Background LPGN is the prototypic immune-complex (IC) mediated disease. The current dogma that IC deposition with complement (C) activation inevitably leads to renal damage is neither sufficient nor comprehensive to account for the pathogenesis of LPGN. Our genetic studies support the thesis that acute GN (aGN) with IC deposition with C activation and cell infiltration and mesangial proliferation is a distinct phenotype from chronic GN (cGN) that is characterised by glomerulosclerosis, tubular dilatation and interstitial fibrosis with severe proteinuria and premature mortality. Furthermore, circulating ANA and anti-dsDNA Abs are not required for LPGN.

Materials and methods Female mice of NZM2328 and its intra-chromosomal recombinant congenic line NZM2328.Lc1R27 (R27) were used. Anti-GBM induced GN was used as a model for IC mediated LPGN. Immunofluorescence was used to identify cell populations that made cytokines and complement components.

Results R27 developed aGN and mild proteinuria without progression to cGN, end stage renal failure and early mortality. The kidneys of aged R27 had IC deposition and cellular infiltration, not distinguishable from that in aGN in NZM2328. Multiple approaches showed that the lack of progression from aGN to cGN in R27 was due to podocyte resistance to IC-mediated damage, a phenotype controlled by the allelic Cgnz1 gene.

With a novel method to study intra-glomerular cytokine production, NZM podocytes were shown to be the major cell population that makes IL-1β in cGN, infiltrating CD11b+ macrophages make TNFα and the mesangial cells make IL-6. R27 mice do not show this compartmentalization of cytokine production. Preliminary data showed that the podocytes in Class III and IV lupus GN make IL-1β.

Podocytes at the early and late cGN were shown to make C1q and C3. The expression of these complement components is less evident in R27 kidneys. C1q and C3 were present in some podocytes in biopsies of class III and IV lupus nephritis. Urinary podocytes making C1q were detected by us in of four patients with LPGN but not in normal individuals.

Conclusions Our studies of lupus GN in both mouse and in man have provided significant information and insight regarding the role of podocytes as targets and as responders to IC mediated injuries. Our results suggest that the pathogenesis of LPGN should be revisited with focus on the local factors that may be of...