Conclusions B cell phenotypic abnormalities precede the onset of clinical disease in ANA+ individuals and have a pattern suggesting ongoing activation through T-B collaboration.

Materials and methods

Background

SOCS1-KIR to modulate T lymphocyte effector functions was accomplished through flow cytometric analysis of peripheral blood and immune organ analysis both directly ex-vivo and subsequent to culture.

Results

Together these results suggest that a peptide mimic of SOCS1 may have value as a therapeutic for lupus.

Acknowledgements

We thank Dr. Howard M. Johnson for a generous gift of SOCS1 and SOCS3 antibodies. We also thank Dr. Laurence Morel for critical review of this manuscript and Dr. Tenisha Wilson for technical support. The study was supported by a grant from the Lupus Research Institute, a BD Biosciences Research Grant, the NIH/NCATS Clinical and Translational Science Awards to the University of Florida TL1 TR000066 and UL1TR000064, a sub-award from NIH/NIAID/U01AI101990, and the University of Florida.

Funding provided through Alliance for Lupus Research Project Grant and NIH R21 AI1037717.

Acknowledgements

Funding provided through Alliance for Lupus Research Project Grant and NIH R21 AI1037717.

Conclusions

Background

Materials and methods

Methods

Materials

Results

Conclusions

Acknowledgements

Conclusions

Background

Materials and methods

Results

Conclusions

Acknowledgements