REMISSION AND LOW LUPUS DISEASE ACTIVITY STATUS (LLDAS) PROTECT LUPUS PATIENTS FROM DAMAGE OCCURRENCE: DATA FROM A MULTI-ETHNIC, MULTINATIONAL LATIN AMERICAN LUPUS COHORT

1Manuel F Ugarte-Gil, 2Daniel Wojcifka, 3Guillermo J Pons-Estel, 4Luis R Catoggio, 4Cristina Drenkard, 5Judith Sarano, 6Guillermo A Berbott, 7Eduardo F Borba, 8Emilia I Sato, 9Joao C Tavares Brenol, 10Oscar Urbe, 11Luis A Ramirez, 12Marlene Guibert-Toledano, 13Loreto Massardo, 14Mario H Cardel, 15Luis H Silveira, 16Rosa Chacón-Díaz, 17Graciela S Alarcon, 18Bernardo A Pons-Estel. 1Rheumatology, Hospital Guillermo Almenara Ingogoya, EsSalud, Lima, Perú; 2Hospital Guillermo Almenara Ingogoya, EsSalud, Lima, Perú; 3GLADEL consultant, Rosario, Argentina; 4Department of Autoimmune Diseases, Hospital Clinic, Barcelona, Spain; 5Sección de Reumatología, Servicio de Clínica Médica, Hospital Italiano, Instituto Universitario Escuela de Medicina Hospital Italiano y Fundación Dr. Pedro M. Catoggio para el Progreso de la Reumatología, Buenos Aires, Argentina; 6Division of Rheumatology, Emory School of Medicine, Atlanta, USA; 7Instituto de Investigaciones Médicas "Alfredo Lunari"; Buenos Aires, Argentina; 8Hospital Escuela "Eva Perón", Granadero Baigorria; 9Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil; 10Disciplina de Reumatología, Escuela Paulista de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Universidade Federal de São Paulo -UNIFESP, São Paulo, Brazil; 11Hospital das Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Brazil; 12University of Antioquia, Hospital Universitario "San Vicente de Paul", Medellin, Colombia; 13Centro de Investigaciones Médico Quirúrgicas- CIMEQ, Havana, Cuba; 14Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile; 15Centro de Investigación Clínica de Morelia SC, Morelia, Michoacan, Mexico; 16Instituto Nacional de Cardiologia Ignacio Chávez, Ciudad de Mexico, Mexico; 17Servicio de Reumatología, Centro Nacional de Enfermedades Reumáticas, Hospital Universitario de Caracas, Caracas, Venezuela; 18Departamento de Medicina, Division of Clinical Immunology and Rheumatology, School of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA; 19Hospital Provincial de Rosario, Rosario, Argentina.

Background
Recent definitions of both Remission and LLDAS have been proposed which include disease activity status and medication intake [immunosuppressive (IS) drugs and corticosteroids]. The aim of this study was to evaluate both on the outcome of SLE patients.

Materials and methods
Interval was defined as the period between two SLEDAIs or between one SLEDAI and the end of the follow-up. Four disease activity statuses were defined: Remission off-therapy = SLEDAI = 0 and a prednisone dose ≤5 mg/d and/or IS drugs in maintenance dose; LLDAS = SLEDAI<4, a prednisone dose ≤7.5 mg/d and/or IS drugs in maintenance dose; and non-optimally controlled status = SLEDAI >4 and/or prednisone dose >7.5 mg/d and/or IS drugs in induction dose. Antimalarials were allowed in all groups. Predefined outcomes were mortality, new damage [defined as an increase of at least 1 point in the SLICC/ACR damage index (SDI)] and severe new damage (defined as an increase of at least 3 points in the SDI). Univariable and multivariable Cox regression models adjusted for possible confounders were performed in order to define the impact of disease activity status, as time-dependent variable, on these three outcomes.

Results
One thousand three hundred and fifty patients from the GLADEL cohort, with at least two intervals, were included, including 5672 intervals. Median length of the intervals was 7.1 months (interquartile rank 5.1–11.7). Median number of intervals per patients was 4 (2–7). The most frequent interval was non-optimally controlled (4446; 78.4%), followed by LLDAS (566; 10.0%), remission-on-therapy (553; 9.7%) and remission-off-therapy (107; 1.9%). Seventy-nine patients died during the follow-up, 606 presented new damage and 177 severe new damage. Because of the limited number of intervals in the off-therapy group, this group was combined with the on-therapy group. The impact of these disease activity statuses on the pre-specified outcomes is depicted in Table 1. Of importance, in multivariable analyses, remission on/off therapy was associated with both, a lower risk of new damage (HR: 0.52; 95% CI: 0.37–0.72), and of severe new damage (HR: 0.32; 95% CI: 0.15–0.65); LLDAS was associated with a lower risk of severe new damage (HR: 0.46; 95% CI: 0.23–0.91). Although the HR were in the right direction for the mortality outcome, the confidence intervals were too wide, probably because of the relative low number of events in this category.

Conclusions
Remission on/off therapy diminished the risk of new and severe new damage, and LLDAS diminished the risk of severe new damage after adjusting for other well-known risk factors of damage.

Abstract CE-19 Table 1 Impact of disease activity statuses on mortality, new damage and severe new damage. Univariable and multivariable analyses

<table>
<thead>
<tr>
<th>Group</th>
<th>Mortality Unadjusted Hazard Ratio (95% CI)</th>
<th>New damage** Unadjusted Hazard Ratio (95% CI)</th>
<th>Severe new damage*** Unadjusted Hazard Ratio (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remission On/Off</td>
<td>0.46 (0.17–1.27)</td>
<td>0.47 (0.34–0.65)</td>
<td>0.52 (0.16–0.60)</td>
</tr>
<tr>
<td>p-value</td>
<td>0.1330</td>
<td>< 0.0001</td>
<td>0.0006</td>
</tr>
<tr>
<td>LLDAS</td>
<td>0.65 (0.26–1.60)</td>
<td>0.69 (0.50–0.93)</td>
<td>0.74 (0.21–0.81)</td>
</tr>
<tr>
<td>p-value</td>
<td>0.3454</td>
<td>0.0614</td>
<td>0.0100</td>
</tr>
</tbody>
</table>

LLDAS: Lupus low disease activity status. * Adjusted by age at baseline, gender, ethnicity, socioeconomic status, years of instruction, medical coverage and first SDI. ** One-point increment in the SDI. *** Three-point increment in the SDI.
Acknowledgements This study was performed using data from the GLADEL cohort.

CE-20 LUPUS AUTO-ANTIBODIES AND CLINICAL OUTCOMES AMONG JAMAICAN SLE PATIENTS

Davis Stacy1, Onyeluwa Cynthia, De Ceulaer Karel. Division of Rheumatology, Department of Medicine, University of the West Indies, Mona

Background The purpose of this study is to correlate lupus antibodies with clinical features of Jamaican SLE patients and assess their predictive value.

Materials and methods The study was guided by two research questions. To answer these questions, an ex-post facto research design was used. This design was used because the subjects already had Lupus before treatment, which paved the way for a retrospective study of possible relationships and effects of the treatments to be conducted. The sample size used was (n = 136). Between May 2009 and December 2010, 136 SLE patients were tested for auto-antibodies.

Results Fifty five percent were positive for anti-ssDNA, 35% positive for anti-dsDNA, 46% for anti-Sm, 83% for anti-RNP/Sm, 76% for anti-Ro, 31% for anti-La, 30% for anti-chromatin and 65% for proteinuria. After a mean follow up of 4.5 years, the findings showed that elevated ssDNA and dsDNA in the initial samples were predictive of proteinuria, while elevated anti-Sm levels were predictive of proteinuria, low haemoglobin, lymphopenia and increased heart rate. The results of the Pearson Product Moment Correlation showed a weak to moderate relationships between ssDNA and Creatinine (r = 0.209, p < 0.05); DMARD use (r = 0.226, p < 0.05); Proteinuria (r = 0.286, p < 0.01); and Average Prednisone Dose (APD) (r = 0.363, p < 0.01). A weak to moderate relationships were also observed between dsDNA and Hb (r = -0.218, p < 0.05); Proteinuria (r = 0.399, p < 0.01); and APD (r = 0.457, p < 0.01). Anti SM correlated with Proteinuria (r = 0.374, p < 0.05) while anti RNP/SM correlated with Hb (r = 0.304, p < 0.05), and anti-Histone correlated with Proteinuria (r = 0.461, p < 0.05). The simple regression analysis conducted to examine if SM be used to predict heart rate, Hb, and Lymphocytes. The results were significant: Hb (R² = 0.217, F = 23.843, p < 0.01); Hb and APD (R² = 0.262, F = 15.070, p < 0.01); and Hb, APD and organ involvement (R² = 0.305, F = 12.311, p < 0.01).

Conclusions This retrospective study showed that elevated ssDNA and dsDNA in the initial samples were predictive of proteinuria, while elevated anti-Sm levels were predictive of proteinuria, low haemoglobin, lymphopenia and increased heart rate.