Background When found in the absence of antibodies to extractable nuclear antigens (ENA) or anti-double-stranded DNA (dsDNA) (i.e., monospecific), autoantibodies to the nuclear autoantigen dense fine speckles 70 (DSF70) are purported to rule out SLE. The reported frequency of anti-DSF70 by chemiluminescence (CIA) in SLE is low compared to healthy individuals (0–5.7% vs. 1.3–23.2%), while the frequency of monospecific anti-DSF70 in SLE is even lower at 0–0.4%. There are no studies examining the frequency of anti-DSF70 in an early inception SLE cohort. This study determined the prevalence of anti-DSF70 in a multi-national, multi-ethnic early inception SLE cohort and examined demographic, clinical, and autoantibody associations.

Materials and methods Patients fulfilling ACR Classification Criteria for SLE were enrolled in the Systemic Lupus International Collaborating Clinics (SLICC) inception cohort within 15 months of diagnosis. Demographic and clinical data were collected at enrollment. ANAs were detected by indirect immunofluorescence on HEp-2 cells (IndimmuneConcepts, Sacramento) and ENAs and dsDNA by an addressable laser bead immunoassay (FIDIS Connective13, TheraDiag, Paris). Anti-DSF70 antibodies were measured by CIA (Inova Diagnostics, San Diego). The association between anti-DSF70 and baseline demographic, clinical, and autoantibody profiles was assessed using univariate and multivariate logistic regression. For the most informative model, only the remaining statistically significant predictors at the 95% CI: were included, after eliminating other potential predictors individually, starting with the least likely to be associated with the outcome.

Results 1137 patients were included; 89.9% were female and 93.8% were ANA positive (Table 1). The frequency of anti-DSF70 was 7.1% [95% CI: 5.7–8.8%]. 13 of 1137 (1.1%) [95% CI: 0.6–1.9%] were positive for anti-DSF70 only (monospecific). In univariate analysis, patients with musculoskeletal activity (based on SLEDAI items) or anti-β-2 glycoprotein-1 (anti-β2GP1) were more likely to have anti-DSF70, whereas those with anti-dsDNA, anti-SSA/Ro60, anti-SSB/La, or anti-U1RNP were less likely to have anti-DSF70. In multivariate analysis, patients with musculoskeletal activity (Odd Ratio (OR) 1.25 [95% CI: 1.10, 1.41]) or anti-β2GP1 (OR 2.15, 95% CI: 1.21, 3.84) were more likely to have anti-DSF70, while those with anti-dsDNA (OR 0.53, 95% CI: 0.31, 0.92) or anti-SSB/La (OR 0.25, 95% CI:0.08, 0.82) were less likely to have anti-DSF70.

Conclusions The prevalence of anti-DSF70 in newly diagnosed SLE patients was at the high end of the range previously published for SLE (7.1% vs. 0–5.7%) and was associated with musculoskeletal activity and anti-β2GP1. However, ‘monospecific’ anti-DSF70 was rare (1.1%) and is potentially useful to discriminate between ANA positive healthy individuals and SLE.
Background
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease with unknown aetiology and a broad clinical expression. One important problem in the management of SLE is the access, and the adherence to drugs, especially in developing countries.

Materials and methods
The national public health system (SNSS) covered the health for 73.2% of the Chilean population. Some diseases have been included in a special program of Health Specific Guarantees (GES), in order to assure full access to drugs. SLE was included in this program in 2013 and brings us the opportunity, by first time, to know the number of our patients. The pharmacy of our hospital has detailed registry of the outpatient prescribed and dispatched medication on SLE patients.

Conclusions
Just under 3% of the incident SLE cohort developed a cancer over an average follow-up of 6.9 years. The most common cancers were breast, non-melanoma skin, and lung cancers. The vast majority of lung cancers were smokers, supporting the belief that lung cancer risk in SLE (as in the general population) is largely driven by smoking. Further analyses will determine the standardised incidence rates for these cancers in SLE, versus the general population.

Acknowledgements
We thank all SLICC investigators and their patients for their invaluable data and dedication to SLE research.