EARLY SEQUENTIAL COMBINATION THERAPY WITH Mizoribine and Tacrolimus in Sixty Three Patients of Lupus Nephritis in a Single Centrecenter in Japan

M Okada*, R Kawato, R Rokutanda. St. Luke’s International Hospital, Immuno-Rheumatology Centre, Chuo-ku, Japan

Background and aims Mizoribine is an inhibitor of inosine monophosphate dehydrogenase, which is widely used for patients with lupus nephritis and also patients after renal transplants. Its anti-cytomegaloviral effect is unique as an immunosuppressant. We examined the efficacy and safety of early sequential combination of mizoribine and tacrolimus in lupus nephritis.

Methods Retrospective review of medical record was performed for all the 63 patients who received the combination therapy of mizoribine and tacrolimus and corticosteroids for induction or maintenance of lupus nephritis at St. Luke’s International Hospital, Tokyo, Japan. For efficacy analysis, we extracted a series of change in serum creatinine, serum complement level, urine protein creatinine ratio, dose of corticosteroid. We further reviewed safety profile such as adverse events occurred during the use of multi-target therapy, drug survival rate, or reasons for discontinue multi-target therapy in all patients. Complete remission of lupus nephritis was defined as a value of proteinuria <0.5 g/gCr, normal urinary sediment, serum albumin 3.5 g/dl and a normal value of serum creatinine.

Results Fifty six out of the sixty three patients (female: male=59:4, average age 37.4 years old) achieved complete remission in 6 months and there were only two relapses and both of them had Class V nephritis. At four month, the average urine protein creatinine ratio was 0.36 g/gCr, and the average dose of prednisolone was 9.9 mg/day. There were only three episodes of infections which required antibiotics administrations.

Conclusions Early sequential combination of mizoribine and tacrolimus seems to be effective and safe for lupus nephritis.

DEFINING SUBSETS IN SLE: THE INTERPLAY AMONG IFN-1, IFN-1 AND TH17 AXIS CYTOKINES

1V Oket*, 2S Brauner, 3A Larsson, 1G Gustafsson, 1Zickert, 1Gunnarsson, 1E Sveringsson. Karolinska Institutet, Department of Medicine- Rheumatology Clinic, Stockholm, Sweden; 2Karolinska Institutet, Department of Medicine- Rheumatology research Lab, Stockholm, Sweden; 3Uppsala University, Department of Medical Sciences- Clinical Chemistry, Uppsala, Sweden

Background and aims Interferon (IFN)-α are pivotal in systemic lupus erythematosus (SLE), and type III IFNs (IFN-λ) were recently also associated with SLE. We investigated levels of IFN-α and IFN-λ1, and related cytokines in SLE patients and controls.

Methods We included 261 SLE patients and 261 population controls. All were examined and assessed for current organ manifestations and disease activity/damage using SLAM, SLE-DAI and ACR/SDI scales. Levels of IFN-λ1, IFN-α, IL-17A, IL-23 and IP-10 were measured by ELISA.

Results IFN-λ1 and IFN-α were detected in 29% and 44% of patients respectively, but their levels did not correlate. High serum levels of IFN-λ1 were positively associated with antinucleosome antibodies and lymphopenia, but negatively with musculoskeletal damage. Positive correlations between levels of IFN-λ1, IL-17A and IL-23 were observed. Patients with high levels of these three cytokines had more disease damage, especially renal. High levels of IFN-α were associated with mucocutaneous disease, leukopenia, low complement, Ro/SSA and La/SSB, whereas vascular events and antiphospholipid antibodies (aPL) were uncommon.

We identified two subgroups with high disease activity: one double IFN-λ1 and IFN-α high and another IP-10 high. The former had more neuropsychiatric manifestations, while the latter had more arthritis.

Conclusions Measurements of circulating IFN-λ1 and IFN-α define SLE patients with different characteristics. Levels of IFN-λ1 correlate with Th17 cytokines and identify a subgroup with more damage. Disease activity is associated with either upregulation of both type I and III IFNs, or independently with IP-10. Our findings could be of major importance when tailoring therapy for SLE patients with agents targeting IFN-pathways.