model showed a direct negative effect of higher socioeconomic status and a positive indirect effect of higher disease activity on MetS, the latter through corticosteroid dose. MetS did not directly impact HRQOL but had an indirect negative impact on it, through depression.

Conclusions In our causal model, MetS risk factors were related to MetS components. The latter had a negative indirect impact on HRQOL, through depression. Clinicians should consider socioeconomic status and medication and seek to modify disease activity, MetS, and depression to improve the HRQOL of SLE patients.

Background and aims Prolactin has an immune stimulatory effect and may promote autoimmunity by encouraging the development of antigen presenting cells expressing MHC class II and co-stimulatory molecules and modulating IFN-γ secretion. This study aimed to evaluate the relationship between circulating prolactin level and systemic lupus erythematosus (SLE), and to establish a correlation between plasma/serum prolactin levels and SLE activity.

Methods We performed a meta-analysis comparing the plasma/serum prolactin levels in patients with SLE to controls, and examined correlation coefficients between circulating prolactin level and SLE disease activity.

Results Twenty-five studies with a total of 1056 SLE patients and 426 controls were included. Prolactin levels were significantly higher overall in the SLE group than in the control group (SMD = 0.987, 95% CI = 0.512–1.463, p = 4.7 × 10^-8). Stratification by ethnicity showed significantly elevated prolactin levels in the SLE group in Asian, Latin American, and mixed populations (SMD = 0.813, 95% CI = 0.137–1.490, p = 0.018; SMD = 0.981, 95% CI = 0.307–1.655, p = 0.004; SMD = 1.469, 95% CI = 0.443–2.495, p = 0.005, respectively), but not in the European population. Meta-analysis of correlation coefficients showed a significantly positive correlation between circulating prolactin level and SLE activity (Correlation coefficient = 0.379, 95% CI = 0.026–0.487, p = 4.0 × 10^-6). The dynamic range of detection on the array was 1–10^4 ng/mL for commercial Abs spiked into saliva. We observed a high degree of specificity for its target antigen. IgG Ab reactivity against specific antigens was found mainly in serum, while IgA Ab reactivity to given antigens was predominant in saliva. SAM identified 7 antigens including BAFF, Ro60, U1-A and Sm/RNP that were significantly more reactive to IgA Ab in the saliva of SLE patients than in healthy controls (false discovery rate < 0.01). The hierarchical clustered heat-map successfully placed SLE patients into close subgroups.

Conclusions Protein microarrays facilitate detection of autoantibody in human saliva as well as serum. Saliva profiling revealed that elevated IgA autoantibody reactivity to several targets including BAFF was associated with SLE compared with controls.

Background and aims Many reports suggest that saliva could be a source of biomarkers capable of detecting certain diseases. However, very few studies conducted to profile autoantibody isotypes in the saliva of autoimmune diseases.

This study was performed to establish protein microarray for saliva diagnostics and to identify distinct profiles of salivary autoantibody in patients with systemic lupus erythematosus (SLE).

Methods We constructed antigen microarrays with canonical antigens of SLE as well as cytokines to characterise autoantibodies in matched saliva and serum derived from 17 SLE patients and 13 healthy controls. The autoantibody IgG and IgA isotypes were assayed. The Axon Scanner and GenePix Pro 7.0 were used to determine median fluorescence intensities (MFI) of features and background. Data were analysed using MultiExperiment Viewer and Significance Analysis of Microarray (SAM) algorithm.

Results The dynamic range of detection on the array was 1–10^4 ng/mL for commercial Abs spiked into saliva. We observed a high degree of specificity for its target antigen. IgG Ab reactivity against specific antigens was found mainly in serum, while IgA Ab reactivity to given antigens was predominant in saliva. SAM identified 7 antigens including BAFF, Ro60, U1-A and Sm/RNP that were significantly more reactive to IgA Ab in the saliva of SLE patients than in healthy controls (false discovery rate < 0.01). The hierarchical clustered heat-map successfully placed SLE patients into close subgroups.

Conclusions Protein microarrays facilitate detection of autoantibody in human saliva as well as serum. Saliva profiling revealed that elevated IgA autoantibody reactivity to several targets including BAFF was associated with SLE compared with controls.

Background and aims To set up the data base of Systemic Lupus Erythematosus using data capture technology (Hitales platform).

Methods Using Optical Character Recognition, Artificial Intelligence, Natural language processing technology to transfer the medical records into structured data which can be easily and freely explored. The medical records are acquired from admitted medical histories of department of Shanghai Renji Hospital.

Results Totally 4150 cases of admitted SLE patients in Dept. of Rheumatology Shanghai Renji Hospital from 2010–2015 were enrolled. The clinical patterns can be easily visualised. 3729 were females and 375 males; The average age was 36.2 ± 14.1, with SLEDAI scores of 6.9±5.6. The most items frequently counted in SLEDAI were proteinuria (37.6%), low complement (33.7%) and rash (29.2%). Compared to female patients, male patients were tendency to have proteinuria (48.4% vs.36.6%, p<0.01), hematuria (25.8% vs.19.7%, p<0.01). Disease activity evaluated by SLEDAI were highest in summer, however the highest cost in hospital were in winter. 47.0% (1948/4150) patients with lupus nephritis did renal biopsy. The majority pathology type was type IV (27.4%), while 23.6% for type V and 12.1% for V+IV. The most common features counted AI and CI were glomerular cell proliferation (89.6%) and interstitial fibrosis (62.4%) respectively.