Background and aims Dectin-1 is a c-type lectin like receptor that signals via syk and is involved in anti-fungal immunity. Dectin-1 was found to trigger experimental inflammatory arthritis, and likely play a role in the pathogenesis of some autoimmune diseases. This study aimed to examine dectin-1 expression and function of circulating CD14+ monocytes and monocyte-derived dendritic cells (MDDCs) in patients with systemic lupus erythematosus (SLE)

Methods SLE patients with active and inactive diseases and healthy subjects were recruited. Dectin-1 agonists including curdlan, zymosan and toll-like receptor agonists Pam3CSK4 (TLR2) and LPS (TLR4) were used to stimulate monocytes and/or MDDCs. Dectin-1, ROS and phosphorylated-syk (p-Syk) were measured by flow cytometry. Cytokine profile was measured by and multi-bead immunoassay.

Results Dectin-1 expressing monocytes was significantly lower in active SLE patients compared to inactive patients and healthy controls. The absolute count of dectin-1 expressing monocytes correlated significantly and inversely with SLEDAI, anti-dsDNA antibody level and C4. Despite this, ROS production upon stimulation by dectin-1 agonists was comparable. Stimulation of dectin-1 led to activation and maturation of MDDCs. SLE MDDCs showed higher p-Syk activation compared to normal MDDCs upon dectin-1 stimulation. Curdlan-stimulated MDDCs produced higher levels of IL-1ß, IL-23 and TNF-α. Adding TLR2 agonist to curdlan, SLE MDDCs produced significantly higher level of IL-1ß compared to normal MDDCs.

Conclusions Active SLE patients had significantly lower circulating dectin-1 expressing monocytes which produced comparable level of ROS compared to inactive patients and healthy subjects. Dectin-1 agonists led to significantly higher Th17 promoting cytokines upon co-stimulation with TLR2 in SLE MDDCs.

349 TMEM173/STING IS CRUCIAL FOR LUPUS DEVELOPMENT IN FCGR2B-DEFICIENCY MICE

1P Pisitkun*, 2A Thin-Uam, 3M Tansakul, 2B Wongprom, 3A Leelavathanichkul, 5S Paludan, 21T Wang*, 22I Marken, 3K Cerossi, 1M Li, 2K Elkon, 3X Zeng, 3N Gillisay, 1Peking Union Medical College Hospital, Rheumatology, Beijing, China; 2University of Washington, Rheumatology, Seattle, USA; 3Benaroya Research Institute at Virginia Mason, Translational Research Program, Seattle, USA

Background and aims Toll-like receptor 7 (TLR7) has been implicated in B cells activation and the generation of pathogenic autoantibodies. Newly-formed transitional (TR) B cells are enriched in autoreactive specificities and are increased in some SLE patients. This study was undertaken to examine a possible link between the TR B cells expansion/activation and TLR7 levels in SLE.

Methods PBMCs were collected from SLE patients and healthy donors and analysed for the expression of TLR7, TLR9 and IFN-responsive genes by RT-PCR. The frequencies of B cell populations were analysed by flow cytometry. BAFF titers were analysed by ELISA. TLR7 variant rs3853839(C/G) was detected by Taqman 5’-allele discrimination assay. TR B cells were primed with IFNα and stimulated with TLR7 ligands in vitro.

Results High expression levels of TLR7 in SLE patients positively correlated with IFN signature and disease activity, but not with BAFF titers. SLE patients with high levels of TLR7 (TLR7hi group) showed an expansion of CD19+CD38+CD24+CD10+ TR B cells. Overall, frequencies of TR B cells positively correlated with the levels of TLR7, but not TLR9. SLE patients, carrying a risk G allele, had increased TLR7 expression and TR cell frequencies, compared to non-risk allele carriers. TLR7hi SLE patients showed increased autoantibody titers and skewing towards Sm/RNP antigens. Upon IFNα priming, TR B cells up-regulated TLR7 and differentiated into plasmablasts in response to TLR7 ligand stimulation.

Conclusions Our findings suggest that dysregulation of TLR7 in SLE might drive the expansion and promote the activation of TR B cells, which might be a source of autoantibodies.