Background and aims Allergy is a common condition that is caused by an overreaction of the immune system to foreign substances. Severe allergic reactions can result in a systemic life-threatening state referred to as an anaphylactic shock. The progression of the anaphylactic reaction is hard to control after onset, and there is no effective prophylactic treatment available. Recently, mice deficient of the group III metabotropic glutamate receptor mGluR7 were shown to display an anaphylactic-like behaviour when exposed to peripheral histamine, suggesting that mGluR7 works as a neuronal brake on peripheral neurons involved in allergy and anaphylaxis. However, the role of mGluR7 in allergen-induced anaphylaxis is still unknown.

Methods In the PCA model, on the first day, BALB/c mice were lightly anaesthetised with isoflurane and their left ears were intradermally (i.d.) injected with a monoclonal antibody (IgE directed against OVA- trinitrophenol (TNP), 1 μg in 10 μl PBS), whereas the right ears were used as controls (receives an i.d. injection of 10 μl PBS as vehicle). The PCA reaction was induced 24 hours later by an intravenous injection of 50 μg OVA-TNP in 200 μl of 2% Evans blue in PBS.

Results Here, we show that central activation of mGluR7 dampens the development of allergen-induced anaphylaxis as intrathecal, but not intraperitoneal, prophyllactic administration of the mGluR7 allosteric agonist N, N-dibenzhydrochloride [ML1] AMN082 attenuated the development of passive cutaneous anaphylaxis in mice.

Conclusions Activating the mGluR7 system thus represents a potential preventive treatment for anaphylaxis.

72 IMPLICATIONS OF AUTOPHAGY FOR FUNCTIONAL CHANGES OF RHEUMATOID ARTHRITIS FIBROBLAST-LIKE SYNOVIOCYTES

1JM Kim*, 2J Bang, 3YG Jeong, 4CH Lee, 5CN Son, 6SH Kim, 7Keimyung University Dongsan Medical Centre, Division of Rheumatology-Department of Internal Medicine, Daegu, Republic of Korea; 8Keimyung University Graduate School, Medicine, Daegu, Republic of Korea; 9Changwon Fatima Hospital, Division of Rheumatology-Department of Internal Medicine, Changwon, Republic of Korea; 10School of Medicine- Wonkwang University, Division of Rheumatology-Department of Internal Medicine, Iksan, Republic of Korea

10.1136/lupus-2017-000215.72

Background and aims Rheumatoid arthritis (RA) is characterised by exaggerated synovial proliferation in which interleukin-17A (IL-17A) plays a key role. Recently several evidences support the implication of autophagy in the pathogenesis of RA. The aims of this study are (1) to evaluate whether IL-17A influences on autophagic flux in RA synovium and (2) to investigate whether the modulation of autophagy can regulate migration and proliferation of fibroblast-like synoviocytes (FLS) from the patients with RA (RA-FLS) under inflammatory milieu.

Methods FLS from the patients with RA or osteoarthritis (OA) were cultured with IL-17A and/or autophagy regulators. The expression of marker proteins for autophagic flux or the formation of autophagolysosome was analysed by western blot or immunofluorescence study. A migration scratch assay was used to assess FLS migration. Proliferation of FLS was determined by the viable cell count using trypan blue.

Results LC3 conversion from LC3-I to LC3-II was increased in RA-FLS than in OA-FLS. IL-17A upregulated the expression of LC3B, Atg5, Beclin1, LAMP1 in RA-FLS. The accumulation of p62 was also prominent in RA-FLS. Migration and proliferation of FLS stimulated by IL-17A was suppressed by Bafilomycin A1 which prevented the formation of autophagolysomes. P62-silencing enhanced IL-17A-induced autophagy activation in RA-FLS.

Conclusions This study reveals that IL-17A stimulates autophagy and that intervention of autophagy can control IL-17A-induced migration and proliferation of FLS. Our results also provide additional evidence for a significant role of autophagy in the pathogenesis of RA. Thus, we suggest that autophagy might be a potential therapeutic target for the management of RA.
Background and aims γδ T cells are important in combatting infectious agents and tumour cells. Their role in the pathogenesis of rheumatoid arthritis (RA) remains unknown.

Methods 68 patients with rheumatoid arthritis, 21 patients with osteoarthritis and 21 healthy controls were enrolled in the study. Peripheral Vδ2T population, apoptosis, proliferation, chemokine receptor expression and pro-inflammatory cytokine secretion were quantified by flow cytometry. The infiltration of Vδ2 T cells within synovium was examined by immunohistochemistry and flow cytometry. The effect of TNF-α and IL-6 on Vδ2 T migration was determined by flow cytometry and trans-well migration assay.

Results The percentage of peripheral Vδ2T cells of active RA were significantly decreased compared with healthy controls, which were negatively correlated with the disease activity indexes including DAS28, CRP and ESR. However, the Vδ2T cells infiltrated in the synovium of RA were increased compared with OA (p<0.05). Comparing with OA Vδ2T cells, both peripheral and synovial Vδ2T cells of RA produced higher level of IFN-γ and IL-17 (p<0.05). The chemokine receptor CCR5 and CXCR3 expressed on Vδ2T cells in RA were significantly higher than HC and OA patients (p<0.05), which were induced by TNF-α and IL-6. TNF-α antagonist therapy restored the peripheral Vδ2 T cell in RA.

Conclusions Elevated TNF-α in RA patients induced high expression of CCR5 and CXCR3 on Vδ2T cells, which subsequently promote Vδ2 T cells infiltrate into synovium and play an important role in the pathogenesis of RA. Vδ2 T cell is a promising potential biomarker and therapeutic target of RA.

MORINGA OLEIFERA LAM AMELIORATES ADJUVANT RASGRP4 EXPRESSION IN RHEUMATOID SYNOVİUM

Background and aims Moringa oleifera Lam is an ethnomedicine for the treatment of inflammatory disorders in North-eastern part of India. With this background, the current investigation was carried out to scrutinize the anti-arthritis potential of Moringa oleifera in complete Freund’s adjuvant (CFA) induced arthritis animal model.

Methods In the present investigation, we used the CFA, turpentine and formaldehyde into the sub-plantar region of hind paw of rats for induction of arthritis. After induction, joint diameter, arthritis score and body weight were estimated at regular interval. We studied the effect of plant extract on pro-inflammatory cytokines and inflammatory mediator, respectively. Histological architecture and other changes were also studied.

Results Oral treatment of MO at doses of 25, 50 and 100 mg/kg significantly (p<0.001) down-regulated joint inflammation as evidenced via reduction in the joint diameter, arthritic score and inflammatory cell infiltration.

Conclusions MO treatment were found to reduce pro-inflammatory cytokines (TNF-α, IL-6 and IL-1β) and inflammatory mediators PGE2 and COX-2 in a dose dependent manner. MO also down-regulated the NF-kB in adjuvant immunised joint. Apart from these findings MO abrogated degrading enzymes, which was evident from down-regulated protein expression of MMP-3 and MMP-9. Our findings clearly indicate the anti-arthritic potential of MO via inhibition of NF-kB pathway.