Results As predicted for an S1P1,5R modulator, treatment with 0.3, 1 and 3 mg/kg RP-101075 resulted in a dose-dependent reduction in circulating T and B cells, achieving 62%–99% decrease across all doses tested. Compared to vehicle treated animals, 3 mg/kg RP-101075 reduced proteinuria over the duration of the study (34±5 vs 18±1 U*week; p<0.0001), and blood urea nitrogen (36±5 vs 21±3 mg/dL; p<0.0001). Additionally, RP-101075 reduced kidney disease in a dose dependent manner, as quantified by histological assessment of mesangial expansion, endo- and exo-capillary proliferation, interstitial infiltrates and fibrosis, glomerular deposits and tubular atrophy. In addition, RP-101075 significantly reduced expression of fibrotic and immune genes in the kidneys, with minimal effect on IFN-inducible genes. Of particular note, RP-101075 lowered the number of plasmacytoid dendritic cells, a major source of IFNα in lupus patients, and all B and T cell subsets in the spleen.

Conclusions Given that RP-101075 shares the pharmacokinetic profile of ozanimod and reduces circulating lymphocytes similarly, ozanimod warrants clinical evaluation as a potential treatment for SLE.
BIIB059, A MONOCLONAL ANTIBODY TARGETING BDCA2, DEMONSTRATES EVIDENCE OF PROOF OF BIOLOGICAL ACTIVITY IN SUBJECTS WITH CUTANEOUS LUPUS

1R. Furie*; 2VP. Werth; 3J. Merola; 4W. Wang; 5D. Rubah; 6C. Barbey; 7K. Smirnakis; 8B. Werneburg; 9J. Merola; 10, 11L. Stevenson; 12N. Franchimont. 1Northwell Health, Division of Rheumatology, Great Neck New York, USA; 2University of Pennsylvania School of Medicine, Department of Dermatology, Philadelphia, Pennsylvania, USA; 3Harvard Medical School, Centre for Skin and Related Musculoskeletal Diseases, Boston, Massachusetts, USA; 4Biogen, Biostatistics, Cambridge, Massachusetts, USA; 5Biogen, Research/Immuno Discovery Biology, Cambridge, Massachusetts, USA; 6Biogen, Biosimilars Medical/Affiliate Medical Affairs/Neurology, Cambridge, Massachusetts, USA; 7Biogen, Drug Safety and Benefit Risk Management, Cambridge, Massachusetts, USA; 8Biogen, US Medical/Global Medical Affairs Neurology, Cambridge, Massachusetts, USA; 9Biogen, Clinical Development/Immunology Drug Innovation Unit, Cambridge, Massachusetts, USA; 10Biogen, Research/In-Vitro Sciences, Cambridge, Massachusetts, USA; 11Biogen, Translational Sciences/Biomedical and Small Molecule Science, Cambridge, Massachusetts, USA; 12Biogen, Immunology Drug Innovation Unit, Cambridge, Massachusetts, USA.

Background and aims Type I interferons (IFN-I) are central to the pathogenesis of systemic lupus erythematosus (SLE). BDCA2 is a plasmacytoid dendritic cell (pDC)-specific receptor that, upon engagement, inhibits the production of IFN-I and other inflammatory mediators. In this first-in-patient phase 1b study, biological activity of BIIB059, a humanised anti-BDCA2 monoclonal antibody, was evaluated in SLE subjects with active cutaneous lupus (CLE).

Methods 12 adult SLE subjects with active CLE received a single IV administration of either BIIB059 20 mg/kg (n=8) or placebo (n=4). A panel of IFN-responsive genes (IRG) was assessed from whole blood. Cellular infiltration and expression of MxA and IFITM3 were evaluated in skin biopsies from active lesions at baseline and week 4. CLE disease activity was determined using the Cutaneous Lupus Erythematosus Disease Area and Severity Index (CLASI). Safety data were also collected.

Results BIIB059 decreased the expression of IRG in blood and MxA and IFITM3 proteins in skin. CD45+ cells were reduced in skin biopsies of BIIB059-treated subjects. The reduction in inflammatory cells as well as MxA and IFITM3 expression at week 4 correlated with improvement in CLASI activity score at week 12. BIIB059 was well tolerated with no withdrawals due to AEs.

Conclusions The study, confirming the major role played by pDCs in the production of IFN-I in the blood and skin in CLE, supports further development of BIIB059.