










Casey KA, et al. Lupus Science & Medicine 2018;5:e000286. doi:10.1136/lupus-2018-0002866

Lupus Science & Medicine

Figure 4  Change over time in percentage of baseline concentrations of selected proteins which were dysregulated in patients 
with SLE enrolled in the MUSE study. ANGPT2, angiopoietin 2; B2M, beta-2 microglobulin; BAFF, B-cell activating factor; BLC, 
B lymphocyte chemoattractant; CCL, chemokine (C-C motif) ligand; CXCL, chemokine (C-X-C motif) ligand; FCN3, ficolin-3; 
FRTN, ferritin; GRN, granulin; IL1R2, interleukin-1 receptor type 2; IP10, interferon gamma–induced protein 10; ITAC, interferon-
inducible T cell alpha chemoattractant; MCP, monocyte chemoattractant protein; MIP-3, macrophage inflammatory protein 
3; MUSE, a Phase II, Randomized Study to Evaluate the Efficacy and Safety of MEDI-546 in Subjects with Systemic Lupus 
Erythematosus; TNFRSF10C, tumour necrosis factor receptor superfamily member 10c; TNFSF13B, tumour necrosis factor 
ligand superfamily member 13b; TRAIL-R3, tumour necrosis factor-related apoptosis-inducing ligand receptor 3; VCAM-1, 
vascular cell adhesion molecule 1; VWF, von Willebrand factor.

 on 17 D
ecem

ber 2018 by guest. P
rotected by copyright.

http://lupus.bm
j.com

/
Lupus S

ci M
ed: first published as 10.1136/lupus-2018-000286 on 22 N

ovem
ber 2018. D

ow
nloaded from

 



Casey KA, et al. Lupus Science & Medicine 2018;5:e000286. doi:10.1136/lupus-2018-000286 7

Biomarker studies

Furthermore, acute-phase reactant ferritin and endo-
thelial cell marker VWF were significantly downregu-
lated, while eosinophil recruiting protein eotaxin-2, 
anti-apoptotic protein TRAIL-R3 and decoy receptor 
IL1R2 were upregulated in anifrolumab-treated patients 
relative to placebo (figure 4). The two downregulated 
proteins were associated with high IFNGS test score 
at baseline and the three anifrolumab-upregulated 
proteins had lower concentrations at baseline in IFNGS 
test-high patients (online supplementary table S3A), 
confirming the normalisation of IFN-associated serum 
protein levels after the blockade of type I IFN pathway 
by anifrolumab.

Multiple circulating immune cells are altered by anifrolumab
Multiple types of immune cells altered at baseline in 
association with IFNGS test-high status were normalised 
following anifrolumab treatment. From days 85–365 
of the study, lymphocyte, switched memory B-cell, total 
T-cell, CD4 T-cell, memory CD4 T-cell, CXCR5- memory 
CD4 T-cell and CD8 T-cell numbers significantly increased 
from baseline across all time points measured in anifro-
lumab 300-mg-treated patients compared with place-
bo-treated patients (p<0.05; figure  5A, B). The largest 
differences were observed in memory CD4 T-cell concen-
trations relative to those in the placebo group. IFNGS 
test-low patients treated with anifrolumab 300 mg demon-
strated minimal changes from baseline in the immune 
cell subsets.

Discussion
In the MUSE study,19 anifrolumab treatment demon-
strated significant clinical improvements across multiple 
disease activity measures compared with placebo. The 
present analysis was undertaken to better understand the 
serum proteins and immune cell repertoire associated 
with SLE, disease activity and IFN test status and to inves-
tigate the effect of anifrolumab treatment on proteomic 
and cellular dysfunction.

Baseline analyses revealed 27 proteins related to 
overall disease activity measured by SLEDAI-2K and 
seven proteins associated with skin involvement 
measured by CLASI score. All those proteins were 
significantly associated with IFN test-high score. Evalua-
tion of the baseline immune cells also identified distinct 
differences between patients stratified by IFNGS test 
status and CLASI and SLEDAI-2K scores. There was a 
high degree of overlap between the cell types associated 
with IFN test-high status and those with high SLEDAI 
scores. In contrast, few cell subpopulations were associ-
ated with CLASI scores.

The analyses described here have several limitations: 
the flow cytometry data are based on a low number of 
patients and interpretation of the results are limited by 
the cellular populations and markers that were selected. 
Additionally, while the serum concentrations of >100 
proteins were examined, many more untested proteins 

may have important roles in the pathophysiology of SLE. 
Also, all protein tests are limited by the assay sensitivity.

Anifrolumab treatment achieved a rapid and sustained 
reversal of SLE-associated lymphopenia, neutropenia, 
monocytopenia and thrombocytopenia compared with 
placebo, normalising lymphocyte, neutrophil, monocyte 
and platelet concentrations. OCS treatment is known to 
cause alterations in circulating lymphocyte and neutrophil 
concentrations23 24 and steroid tapering was permitted 
in the MUSE study.19 Among placebo-treated patients, 
OCS tapering did not result in changes in lymphocyte 
or neutrophil counts, suggesting that the reversal seen 
was attributable to anifrolumab treatment. This finding 
was foreshadowed by several previous reports: (1) serum 
concentrations of IFN-α have been historically linked to 
an inverse relationship with leucocyte counts; (2) thera-
peutic administration of pegylated type I IFN +ribavirin to 
patients with hepatitis C virus has been shown to result in 
leucopenia and thrombocytopenia, demonstrating that 
type I IFN is sufficient to drive these symptoms of disease; 
and (3) SLE-associated symptoms mirror traditional 
type I IFN–associated symptoms of influenza infection 
(eg, leucopenia, fever, myalgia).25–27 A similar reversal of 
SLE-associated monocytopenia and thrombocytopenia 
was also observed in the present study.

Multiple biological mechanisms may account for the 
observed sustained reversal of lymphopenia, neutro-
penia, monocytopenia and thrombocytopenia, including 
alterations in hematopoiesis, changes in cellular migra-
tion to or from tissues, prolonged survival of lymphocytes, 
neutrophils, monocytes and thrombocytes or reduced 
apoptosis/NETosis.

The concentration of TNF-related apoptosis-inducing 
ligand (TRAIL) is elevated in patients with SLE.28 Here, 
TRAIL-R3 concentrations normalised in response to 
anifrolumab. Increased TRAIL-R3 concentrations would 
be expected to trigger a decrease in functional TRAIL and 
apoptosis, supporting the hypothesis that anifrolumab 
treatment improves immune cell survival.

The anifrolumab-mediated reduction in proteins linked 
to B-cell survival (BLC and BAFF) may be critical in damp-
ening B-cell differentiation into plasma cells and mature 
antigen-presenting cells.29 Additionally, the suppression 
of interferon-inducible chemokines IP-10 and ITAC could 
reduce immune cell recruitment to sites of inflammation, 
thereby limiting associated tissue damage.30 Expression of 
IP-10 and serum progranulin has both previously been 
shown to correlate with SLE disease activity31 32 and was 
reduced by both dosages of anifrolumab. Altogether, 
these findings suggest blockade of type I IFN signalling 
could attenuate SLE activity and are consistent with the 
findings in the MUSE study.19 In summary, anifrolum-
ab-mediated proteomic changes provide an opportunity 
to disrupt the type I IFN inflammation axis, leading to 
attenuation of SLE-associated inflammation and damage.

Treatment with anifrolumab resulted in normalisa-
tion of circulating CD4 +and CD8+T cell and switched 
memory B-cell counts in IFNGS test-high compared with 
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Figure 5  The effect of anifrolumab treatment on the prevalence of multiple immune cell subtypes in patients stratified by 
IFNGS test status (A) and on specific T-cell subsets in IFNGS test-high patients (B). (A) Summary table for the comparison 
of mean change from baseline in the anifrolumab 300 mg group versus placebo for all flow cytometry populations across six 
time points separated by IFNGS test-high and test-low patients. Red boxes represent statistically significant increases from 
baseline for the comparison between the 300 mg dosage group and placebo (p<0.05 as calculated using Student’s t-test). Grey 
boxes represent nonsignificant changes. Placebo group (IFNGS test-high): day 1 (n=13); week 85 (n=10); day 141 (n=10); week 
169 (n=10); day 253 (n=7); week 337 (n=8); day 365 (n=4). Anifrolumab 300 mg group (IFNGS test-high): day 1 (n=17); day 85 
(n=13); day 141 (n=14); day 169 (n=14); day 253 (n=12); day 337 (n=14); day 365 (n=13). Placebo group (IFNGS test-low): day 1 
(n=12); day 85 (n=12); day 141 (n=7); day 169 (n=11); day 253 (n=9); day 337 (n=8); day 365 (n=11). Anifrolumab 300 mg group 
(IFNGS test-low): day 1 (n=7); day 85 (n=7); day 141 (n=4); day 169 (n=7); day 253 (n=6); day 337 (n=6); day 365 (n=4). (B) Data 
are mean change from baseline (±SEM) in absolute numbers of T-cell subsets in IFNGS test-high patients. *P<0.05 (Student’s 
t-test for the comparison of anifrolumab vs placebo). Placebo group: day 1 (n=13); day 85 (n=10); day 141 (n=10); day 169 
(n=10); day 253 (n=7); day 337 (n=8); day 365 (n=4). Anifrolumab 300 mg group: day 1 (n=17); day 85 (n=13); day 141 (n=14); 
day 169 (n=14); day 253 (n=12); day 337 (n=14); day 365 (n=13). Anifrolumab 1000 mg group: day 1 (n=18); day 85 (n=18); day 
141 (n=18); day 169 (n=17); day 253 (n=14); day 337 (n=8); day 365 (n=5). DC, dendritic cells; IFN, interferon; IFNGS, IFN gene 
signature; n.s., not significant; SLEDAI, Systemic Lupus Erythematosus Disease Activity Index; WB, whole blood; WBC, white 
blood cells.
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test-low patients. Belimumab, a B-lymphocyte stimula-
tor-specific inhibitor used to treat SLE, has been shown to 
decrease total B-cell counts due to decreases in both naive 
and translational B cells; however, in contrast, has little 
effect on memory B cells in patients with SLE.33 Similarly, 
rituximab, another B-cell depleting therapy, normalises 
the significant disturbances in peripheral B lymphocyte 
homeostasis reported in patients with SLE at baseline.34

This work demonstrates that there is significant 
proteomic and cellular dysfunction in SLE. These 
proteomic and cellular changes are consistent with 
observed changes in other type I IFN-driven diseases, 
such as systemic sclerosis35 and dermatomyositis/poly-
myositis.36 Anifrolumab reverses many of the proteomic 
and cellular changes associated with SLE, findings which 
begin to reveal the wider impact of IFNAR blockade and 
provide a more detailed understanding of anifrolum-
ab’s mechanism of action on a range of immune system 
targets.

These findings provide mechanistic insight into the 
clinical benefit observed with anifrolumab in the MUSE 
study.
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