ROLE OF ANTI-DFS70 ANTIBODIES IN THE SPATIAL-TIME CLUSTER ANALYSIS OF SLE DISEASE

A54

Germany

one patient was low titred positive for anti-DFS70 antibodies. Of the 300 SLE patients, only SLE were diagnosed according to available data of 116 of cases. Furthermore, 1048 patients of a routine cohort with 94 ANCA-associated vasculitis, 87 atopic rhinitis, 135 paediatric patients with undifferentiated connective tissue disease (UCTD), and 660 non-CTD patients (302 rheumatoid arthritis, 135 paediatric patients with celiac disease, and 42 autoimmune liver dis-

Background Positive antinuclear antibodies (ANA) may lead to additional testing and potentially even inappropriate treatment in patients with rheumatic symptoms not caused by systemic lupus erythematosus (SLE). The aim of our study was to evaluate if autoantibodies directed against DFS70 can be used to exclude SLE in ANA positive patients.

Patients and methods Anti-DFS70 antibodies were determined by chemoluminescence assay (CIA) in sera of 352 apparently healthy individuals (AHI), 300 patients with SLE, 335 patients with other connective tissue diseases (CTD) including 56 patients with undifferentiated connective tissue disease (UCTD), and 660 non-CTD patients (302 rheumatoid arthritis, 94 ANCA-associated vasculitis, 87 toxic hepatitis, 135 paediatric patients with celiac disease, and 42 autoimmune liver diseases). Furthermore, 1048 patients of a routine cohort with positive ANA results determined by immunofluorescence on HEp-2-cells showing positive staining of the chromatine region and negative result in confirmatory assays for antibodies against dsDNA, nucleosome, Ro/SS-A and La/SS-B autoantibodies. In the non-CTD group, only 6 of 579 patients (1.2%) were positive for anti-DFS70 antibodies, all of them also show disease specific autoantibodies. In patients with UCTD, 6 (10.7%) were anti-DFS70 antibody positive in the absence of disease specific autoantibodies. Up to now, no development of SLE was observed in these patients.

Conclusion If anti-DFS70 antibodies are positive in the absence of SLE specific autoantibodies, SLE can be excluded with high certainty.

Poster session 3: Epidemiology

SEROLOGICAL DIAGNOSTICS OF SLE

10.1136/lupus-2018-abstract.92

Background Cluster detection is an essential tool in the public health domain with the goal of detecting anomalous clusters of disease cases. We performed a spatial-time cluster analysis of the Johns Hopkins Lupus cohort with the goal of identifying potential spatial-time clusters of SLE organ specific disease activity.

Methods 1844 patients who fulfil 4 of the 11 American College of Rheumatology classification criteria for SLE and who had recorded home addresses were included in the analysis. Cluster detection analysis in both space and time of disease activity expressed as Physician Global Estimate (PGA) was performed. The area utilised in this analysis was a 350 kilometre radial buffer around the Johns Hopkins Lupus Centre, and included all of Maryland, Delaware, and District of Columbia, as well as parts of Pennsylvania, New Jersey, Virginia, and West Virginia. This area was considered due to the high and consistent density of study participants. The data ranged from 1987 to 2017, with the spring, summer, fall, and winter seasons serving as time units for the temporal based analyses.

Results In AH1 and in the non-CTD cohort, anti-DFS70 antibodies occur with a prevalence of 5.1% and 2%, respectively. Of the 1048 selected routine sera, 205 (19.6%) were positive for anti-DFS70 antibodies. Various diseases but no definite SLE were diagnosed according to available data of 116 of anti-DFS70 positive patients. Of the 300 SLE patients, only one patient was low titred positive for anti-DFS70 antibodies in addition to dsDNA, nucleosome, Ro/SS-A and La/SS-B autoantibodies. In the non-CTD group, only 6 of 579 patients (1.2%) were positive for anti-DFS70 antibodies, all of them also show disease specific autoantibodies. In patients with UCTD, 6 (10.7%) were anti-DFS70 antibody positive in the absence of disease specific autoantibodies. Up to now, no development of SLE was observed in these patients.

Conclusion If anti-DFS70 antibodies are positive in the absence of SLE specific autoantibodies, SLE can be excluded with high certainty.
flare included Delaware, Delaware Bay area, and Chesapeake Bay area between 2003 and 2014. Maps were generated highlighting the study area, flares, and identified clusters from all analyses. The space-time effects of environmental and demographic variables on the identified clusters will be considered in subsequent analysis.

Conclusions We describe the first space-time clusters of lupus organ-specific disease activity strongly supporting the role of environmental factors as drivers of lupus activity.

Conclusions We describe the first space-time clusters of lupus organ-specific disease activity strongly supporting the role of environmental factors as drivers of lupus activity.

Objective

To identify patterns (clusters) of damage manifestations within a large cohort of juvenile SLE (jSLE) patients and evaluate the potential association of these clusters with a higher risk of mortality.

Methods

This is a multicentre, descriptive, cross-sectional study of a cohort of 345 jSLE patients from the Spanish Society of Rheumatology Lupus Registry. Organ damage was ascertained using the Systemic Lupus Internation Collaborating Clinics Damage Index. Using cluster analysis, groups of patients with similar patterns of damage manifestations were identified.

Results

Mean age at diagnosis 14.2±2.89, 88.7% were female and 93.4% were Caucasian. A total of 12 (3.5%) patients died, mean SLICC/ACR DI 1.27±1.63. Three damage clusters were identified:

- **Cluster 1** (72.7% of patients) showed damage in only 22.3% of patients, but no significant domain was involved.
- **Cluster 2** (14.5%) was featured by renal damage in 60% of patients, ocular damage in 54%, cardiovascular damage in 20% and gonadal failure in 14%, all significantly higher than clusters 1 and 3 (p<0.001). All patients scored for some damage in SLICC/ACR DI index, with a mean of 2.90±1.54 and mean affected domains of 1.86±0.93.
- **Cluster 3** (12.7%) was the only group with musculoskeletal damage (100%), clearly higher than clusters 1 and 2. All patients scored for some damage in SLICC/ACR DI index, with a mean of 2.66±1.87 and mean affected domains of 1.89±1.18.

The overall mortality rate of patients in clusters 2 and 3 was higher than in cluster 1 (p<0.05) and significantly higher in cluster 2 (2.2x times than cluster 3 and 5x times than cluster 1) (See table 1).

Conclusion

In a large cohort of jSLE patients, we found one cluster with several damage domains involved that we consider clinically meaningful. Another cluster with important musculoskeletal damage manifestations and another cluster with no clinically significant damage at all were also found. These two clusters of jSLE with important clinical damage were found to be associated to higher rates of mortality, specially for the cluster involving renal, ocular, cardiovascular and gonadal domains. Physicians should pay special attention to the early prevention of damage in these particular subsets of patients.