ROLE OF CD107A+ (LAMP-1) CYTOTOXIC CD8+ T-CELLS IN PATIENTS WITH SLE

A Wiechmann, B Wilde, A Krieken, O Wiltzie, S Dolf. Department of Nephrology, University Hospital Essen, Germany; Department of Infectious Diseases, University Hospital Essen, Germany.

10.1136/lupus-2018-abstract.142

OBJECTIVES Cytotoxic T-cells are a thought to play a pivotal role in the pathogenesis of systemic lupus erythematosus (SLE) in particular in lupus nephritis. The aim of this study was to investigate the activation marker CD314 (NKG2D) and CD107a (LAMP-1) on cytotoxic CD8+ T-cells in patients with systemic lupus erythematosus.

METHODS Peripheral blood of patients with systemic lupus erythematosus (n=30) and healthy controls (n=21) was stained with anti-CD8 (PB), -CD3 (Chrom Orange), -CD45RO (FITC), -CD197 (PE), -CD314 (APC), -CD107a (APC) antibodies and analysed by flow cytometry. Kidney biopsies of lupus nephritis patients were investigated by immunohistochemistry and immunofluorescence for the presence of CD8+ CD107a+cells. Patients disease activity was assessed by systemic lupus erythematosus disease activity index (SLEDAI).

RESULTS The percentages of CD314+ on CD8+ T-cells were not different between SLE-patients and healthy controls. The percentages of CD107a+ on CD8+ T-cells were significantly decreased in SLE-patients as compared to healthy controls (40.2%±18.5% vs 47.9±15.0%, p=0.02). This was even more significant in SLE-patients with inactive disease. The evaluation of lupus nephritis biopsies showed a significant number of CD107a+CD8+ T-cells mainly located in the peritubular infiltrates.

CONCLUSIONS These results demonstrate that CD8+ T-cells of patients with systemic lupus erythematosus have an altered activation status which seems to be associated with disease activity. The proof of intrarenal CD107a+CD8+ suggests a role in the pathogenesis of lupus nephritis.

EXAMINING THE MODULATORY EFFECTS OF ANTI-SERINE PROTEASE ANTIBODIES UPON FACTOR XA, THROMBIN AND COMPLEMENT INTERACTIONS

1T McDonnell, C Wincup, V Ripoll, C Gerveshi, A Rahman, M Mackie, M Bott, Giles. University College London, UK; 2Drexel University, Philadelphia, USA; 3Imperial College London, UK.

10.1136/lupus-2018-abstract.144

OBJECTIVE: Serine protease (SP) enzymes play a critical role in both the coagulation and complement cascades. Anti-SP antibodies are found in approximately 40% of patients systemic lupus erythematosus (SLE) and antiphospholipid Syndrome (APS). Complement activation is important in SLE and APS. However, little is known about the effects of anti-SP antibodies on complement activation in these diseases. We sought to investigate whether affinity-purified antibodies to the SP Factor(F)Xa and Thrombin (Thr) alter the effects of these SP on complement cleavage in the presence or absence of the physiological inhibitor anti-thrombin (AT).

METHODS: Serum was obtained by informed consent from patients with SLE (n=10) and/or APS (n=2) under long-term follow-up at University College London Hospital. A novel method was developed to affinity purify anti-FXa and anti-Thr IgG separately. We incubated FXa (2 μM) and Thr (2.7 μM) separately with complement component C3 to determine baseline C3 cleavage. We then repeated the experiment in the presence of AT3, the appropriate anti-Thr IgG (n=3) increased FXa-mediated cleavage of C3 by 1.8-fold. Anti-Thr IgG (n=8) increased Thr-mediated C3 cleavage by 1.8-fold. AT mediated inhibition was prevented by addition of anti-FXa capacity to synthesize certain cytokines (IFN-gamma and IL-2) and to compare it with healthy controls.

RESULTS: Our study showed decreased percentage of CD4+ and CD8+ lymphocytes with TCR zeta chain expression in patients with SLE. The significantly diminished TCR zeta chain expression in lymphocytes of patients with SLE which in addition was correlated with longer disease duration, renal involvement and higher level of serum anti-dsDNA antibodies confirms former studies indicating not only the association of this defect with disease development, but also with more active clinical course.

The in vitro stimulation of T lymphocytes in SLE patients lead to overproduction of IFN-gamma especially in the population of autoreactive TCR zeta -/dim lymphocytes.

On the other hand, T lymphocytes of SLE patients have lower capacity of the synthesis of IL-2, which is strongly correlated with TCR zeta chain expression and may be observed even in patients with very low clinical disease activity.

Conclusion: SLE is characterised by the expansion of TCR zeta -/dim lymphocytes in peripheral blood, which are regarded as autoreactive cells, and is correlated with clinical course of SLE. The decreased expression of TCR zeta may be due to the presence of exogenous inhibiting factor in blood of SLE patients. Higher synthesis of INF-gamma and lower of IL-2 may contribute to chronic inflammation and autoimmune processes in SLE.

T lymphocytes with low or absent expression of TCR zeta chain (TCR zeta -/dim cells) are supposed to have pathogenic effect in the development of autoagression and chronic inflammation. Systemic lupus erythematosus (SLE) is a model of chronic inflammatory disease with autoimmune background.

In vitro studies have shown, that microenvironment rich in proinflammatory cytokines, such as TNF-alfa and IL-6, especially promotes the impairment of TCR zeta chain expression, what leads to the increase of the percentage of T cells with defects of the synthesis of that molecule.

OBJECTIVE: The aim of this study was to define the size of the population of autoreactive TCR zeta -/dim lymphocytes in the blood of patients with SLE and the functional characteristics of TCR zeta -/dim and TCR zeta bright cells based on the assessment of their
IgG (n=2) but not anti-Thr IgG. Analysis of clinical serology records for the last 10 consecutive clinic visits of 28 anti-SP-positive patients showed a lower level of C3 (0.92 g/L) in the patients double positive for anti-FXa and anti-Thr than for anti-Thr alone (1.12 g/L) or anti-FXa alone (1.16 g/L).

Conclusions Anti-FXa and anti-Thr enhance cleavage of C3 by FXa and Thr respectively. Presence of these antibodies in vivo in patients with SLE and/or APS may promote increased complement activation and disease activity. This finding may have potential translational implications for future treatment of these diseases.

PATOPHYSIOLOGICAL ROLE OF TYPE I AND III INTERFERONS IN SYSTEMIC LUPUS ERYTHEMATOSUS (SLE)

M Meineck, A Kommer, L Schmidtke, J Lutz, A Schwarting, A Pautz, J Weimann-Menke. Department of medicine, University medical centre of the Johannes Gutenberg University, Mainz, Germany; Department of Pharmacology, University medical centre of the Johannes Gutenberg University, Mainz, Germany

Systemic Lupus erythematosus (SLE) is an autoimmune disease characterised by activated autoreactive lymphocytes and autoantibodies, resulting in tissue damage in multiple organs. An important factor for the disease’s mortality is the development of Lupus nephritis (LN). Type I and III interferons, which are both part of the antiviral defense, have both been associated with the disease’s activity. In sera and urine of SLE patients an enhanced level of IL28/29 was described, but their distinct functional role in the course of disease need to be further investigated.

To determine the role of type I and III interferons during onset and progression of autoimmunity – with focus on the development of LN – the expression of the IFNs and their specific receptors was observed in lupus prone MRL Faslpr mice. These mice develop SLE-like symptoms and immunocomplex glomerulonephritis. So far we could confirm the expression of IL28 and it’s receptor by tubular epithelial cells (TEC) in the kidney of MRL Faslpr mice. The overall IL28 mRNA expression increased with disease activity in renal tissue, and a positive correlation to the IFNα and IFNβ expression could be observed. Further the mRNA expression of the IFN receptor mRNA in the spleen accelerated with increasing disease activity.

Furthermore MRL Faslpr mice deficient of the IL28R and/or IFNαR were generated and the generation of autoimmune and LN was monitored. In preliminary studies with MRL Faslpr IL28R -/- mice, a less extenuated lumphadenopathy and less severe LN at the age of 3 month was observed, compared to their wild-type littermates. Similar observations according the Lymphadenopathy were made in MRL Faslpr IFNαR -/- mice.

Our results suggest a participation of type III IFNs in the development of Lupus nephritis in MRL Faslpr mice. In upcoming experiments the effect of the IL28R knockout will be compared to the effect of the IFNαR knockout and the combined IL28R-IFNαR knockout. The subsequent aim is to transfer the results obtained in the murine model to human SLE and to evaluate IL28 as disease activity marker.

NUCLEAR ANTIGEN-REACTIVE CD4+ T CELLS ARE EXPANDED IN ACTIVE SLE, CORRELATE WITH DISEASE ACTIVITY, INVADE TARGET ORGANS SUCH AS THE KIDNEYS, AND OUTNUMBER THEIR REGULATORY COUNTERPARTS

D Abdalima, S Tesch, A-S Griesbach, A Scheffold, A Raebuch, U Stendho, N Babel, G-R Burmester, Y Humrich, G Riemekasten, F Enghard. Charité Universitätsmedizin Berlin Department of Rheumatology and Clinical Immunology, Berlin, Germany; Deutsches Rheuma-Forschungszentrum a Leibniz Institute, Berlin, Germany; Berlin-Brandenburg Centre for Regenerative Therapy, Berlin, Germany; Universitätsklinikum der Ruhr-Universität Bochum Centre for Translational Medicine, Bochum, Germany; Universitätsklinikum Schleswig-Holstein Department of Rheumatology and Clinical Immunology, Lübeck, Germany; Charité Universitätsmedizin Berlin Department of Nephrology and Intensive Care Medicine, Berlin, Germany

To determine the role of type I and III interferons during onset and progression of autoimmunity – with focus on the development of LN – the expression of the IFNs and their specific receptors was observed in lupus prone MRL Faslpr mice. These mice develop SLE-like symptoms and immunocomplex glomerulonephritis. So far we could confirm the expression of IL28 and it’s receptor by tubular epithelial cells (TEC) in the kidney of MRL Faslpr mice. The overall IL28 mRNA expression increased with disease activity in renal tissue, and a positive correlation to the IFNα and IFNβ expression could be observed. Further the mRNA expression of the IFN receptor mRNA in the spleen accelerated with increasing disease activity.

Furthermore MRL Faslpr mice deficient of the IL28R and/or IFNαR were generated and the generation of autoimmune and LN was monitored. In preliminary studies with MRL Faslpr IL28R -/- mice, a less extenuated lymphadenopathy and less severe LN at the age of 3 month was observed, compared to their wild-type littermates. Similar observations according the Lymphadenopathy were made in MRL Faslpr IFNαR -/- mice.

Our results suggest a participation of type III IFNs in the development of Lupus nephritis in MRL Faslpr mice. In upcoming experiments the effect of the IL28R knockout will be compared to the effect of the IFNαR knockout and the combined IL28R-IFNαR knockout. The subsequent aim is to transfer the results obtained in the murine model to human SLE and to evaluate IL28 as disease activity marker.