Adaptive Immunity

AI-01 KV1.3 EXPRESSION ON SYSTEMIC LUPUS ERYTHEMATOSUS (SLE) URINARY LEUKOCYTES

Andrew Hinkle, Megan Yuasa, David Peckham, Craig Phillips, Shawn Iadonato, Peter Probst, Keith Elkon, Anne M Stevens*. Seattle Children’s Research Institute, Seattle, WA, USA; Kineta, Inc., Seattle, WA, USA; University of Washington, Seattle, WA, USA.

Background | Effectively memory T lymphocytes (T_Em) implicated in the immunopathogenesis of SLE have been detected in the urine of patients with lupus nephritis. As T_Em depend on the voltage-gated potassium channel Kv1.3 for activation-induced calcium signalling, activated T_Em represents a potential target for the novel Kv1.3 blockade therapy dalazatide. In active SLE nephritis, Kv1.3 is upregulated on peripheral blood CD8+ T_Em and cytokine production was inhibited in SLE T lymphocytes. We therefore hypothesized that Kv1.3 is expressed on urinary leukocytes from patients with lupus nephritis.

Methods | Urinary cells were isolated in 33 samples from patients with SLE ages 15–41 years, (mean 19, IQR 16.2–19.3). Immunofluorescence was performed to quantify and characterize cells expressing Kv1.3. Urinary leukocytes were defined as non-epithelioid cells by morphology. Leukocyte subsets were defined as CD3+ T lymphocytes, CD20+ B lymphocytes, or CD14+ macrophage.

Results | In the urine, leukocytes expressing Kv1.3 were found in samples from every subject studied. Overall, Kv1.3 expression was detected on a mean of 3.5% of leukocytes (range 0.1%–13.4%; IQR 0.8%–5.1%) with higher levels in patients with active disease (4.8%, IQR 1%–6.7%) compared to patients with inactive disease (2.1%, IQR 0.8%–2.7%, p=0.04). CD3+ lymphocytes expressing Kv1.3 were found in all subjects (mean 52% of CD3+ cells, IQR 33%–100%). In 90% of subjects, Kv1.3 was detected on CD20+ B lymphocytes (mean 68%, IQR 46%–100%), and in 90% of subjects CD14+ macrophages (mean 69%, IQR 46%–100%). Patients with class III or IV nephritis had increased frequencies of leukocytes expressing Kv1.3 (6%) compared to patients with Class V nephritis (2%, p=0.01) or no nephritis (1.8%, p=0.01).

Conclusions | Kv1.3 is detectable on SLE urinary B lymphocytes, T lymphocytes, and macrophage, implying that inflammatory cells in the kidney may be targeted by this channel. Peripheral blood cell expression and functional data suggest that SLE activated T_Em lymphocytes may be susceptible to inhibition by dalazatide.

Acknowledgements | This work was funded by Seattle Children’s Research Institute and Kineta, Inc.

AI-03 EFFICACY AND SAFETY OF INTERMITTENT 2-DEOXYGLUCOSE THERAPY IN MOUSE MODELS OF LUPUS

John Wilson, Thomas J Sproule, Porcia Manandhar, Elisabeth Manik, Laurence Morel, Derry C Roopenian*. The Jackson Laboratory, Bar Harbor, ME, USA; Department of Pathology, University of Florida, Gainesville, FL, USA.

Background | Glucose is a primary substrate for cellular respiration. Glucose utilization increases in highly metabolic cells including activated, proliferating T cells and B cells as well as cancers. Lupus is a disorder in which autoreactive CD4+T cell and B cells deviate from normal homeostasis by their uncontrolled proliferation and differentiation. Therapeutic limitation of glycolysis is therefore an attractive approach for attenuating such highly energetic, pathogenic processes inherent to lupus. Here we investigate the potential of the classic glycosylation inhibitor, 2-deoxyglucose (2DG), to prevent and reverse severe forms of autoimmune lupus-like disease in mice. As untoward side effects of 2DG therapy have also been reported, we further evaluate potential complications and biomarkers of 2DG therapy.

Methods | For autoimmune disease studies, the following mouse models for spontaneous lupus-like autoimmune disease were utilized: NZB × NZW F1 (BWF1) females (adult onset) and BXS. Yaa Cda8-/- II15-/- males (acute adolescent onset). 2DG was provided ad libitum in acidified drinking water (2DG 2g/L) for intervals of 8 wks. Mice were monitored longitudinally for weight loss, proteinuria, and survival. To assess potential effects of 2DG in non-diseased mice, C57BL/6/J mice treated with 2DG and controls were analyzed for a series of metabolic, serum chemistry, cardiac, behavioral, immunological and histopathological phenotypes after short and long term exposure.

Results | An 8 wk 2DG treatment of young BXS. Yaa Cda8-/- II15-/- mice prevented their development of prototypic cellular abnormalities and greatly extended lifespans. Given the strong normalizing effects of 2DG in disease prevention, we performed therapeutic interventions in which 2DG was intermittently supplied to 37 wk old BWF1 mice (figure 1A). This treatment abrogated proteinuria even in heavily diseased mice with considerable effort into dissecting immune phenotypes among patients.

Methods | First, we hypothesize that in each SLE patient, either myeloid cells or B cells drive the disease. This hypothesis is supported by the transcriptional profiles of SLE patients and both serologic analyses and transcriptional profiles of unaffected sisters of SLE patients. This paradigm, if confirmed, will influence the appropriate therapy for maintenance of remission. Second, we believe we can identify patients in whom IgG autoantibodies are made by plasma cells maturing through an extrafollicular pathway and patients in whom IgG autoantibodies are made by germinal center derived plasma cells.

AI-02 DISSECTING IMMUNE PHENOTYPES IN SLE

Julien Suurmond, Yemil Atisha-Fregoso, Ashley Barlev, Betty Diamond*. The Feinstein Institute for Medical Research, Manhasset, New York, USA.

Background | There are many possible explanations for the high percentage of failed clinical trials in systemic lupus erythematosus (SLE). Our preferred explanation relates to the heterogeneity of immune phenotypes in SLE patients. We have, therefore, put considerable effort into dissecting immune phenotypes among patients.

Methods | First, we hypothesize that in each SLE patient, either myeloid cells or B cells drive the disease. This hypothesis is supported by the transcriptional profiles of SLE patients and both serologic analyses and transcriptional profiles of unaffected sisters of SLE patients. This paradigm, if confirmed, will influence the appropriate therapy for maintenance of remission. Second, we believe we can identify patients in whom IgG autoantibodies are made by plasma cells maturing through an extrafollicular pathway and patients in whom IgG autoantibodies are made by germinal center derived plasma cells.

Results | Patients might be stratified by plasma cell differentiation pathway so that therapies could be designed to target only one subset of plasma cells and therefore might be less immunosuppressive.

Conclusions | These approaches to patient stratification need further exploration in clinical trials for distinct therapeutic interventions.

Abstracts
and extended the lifespan of many to beyond 80 wks of age (figure 1B and 1C). Safety assessments in C57BL6/J mice after 8 wks of treatment did not show any significant cardiac, behavioral, immunological and histopathological abnormalities. Alterations in serum chemistry analytes, including calcium and magnesium, but not markers of ketosis, were evident shortly after and persisted after 2DG exposure.

Conclusions The results highlight the potent and remarkable normalizing effect of intermittent 2DG therapy in the prevention and treatment lupus-like autoimmune disease with differing genetic and mechanistic etiologies and in its most precipitous forms. This mode of therapy did not incur untoward side effects. We thus propose that therapeutic inhibition of early steps in glycolysis by 2DG has broad potential for its administration and treatment lupus as well as related autoimmune disorders.