and risk of type 2 diabetes mellitus (T2DM) among SLE patients.

Methods Using a population-based database that includes all residents of British Columbia, Canada, we conducted a retrospective, longitudinal cohort study of patients with incident SLE and incident antimalarial use. We established drug courses for antimalarials – defining each new course when a 90 day permissible gap had been exceeded between refills and calculating corresponding proportion days covered (PDC). Our primary exposure was adherence to antimalarials according to three categories: 1) adherent (PDC ≥0.90); 2) non-adherent (0<PDC<0.90); and 3) discontinuer (PDC=0, no drug). T2DM outcomes were defined using International Classification of Disease 9th and 10th Revision Codes, and Canadian Drug Identity Codes for anti-diabetic medication (first date of either encounter). We used multivariable Cox’s proportional hazards models with time-dependent variables to evaluate the association between adherence to antimalarials and risk of T2DM.

Results The study cohort included 1498 patients with incident SLE, with mean age of 44.4±14.8 years and 1360 (90.8%) women. Mean number of antimalarial prescriptions/courses over follow-up was 23.2±37.7/2.1±1.8, with mean course duration of 553.9±820.8 days. Over median 4.62 years of follow-up, we recorded 140 incident cases of T2DM. After adjusting for age, gender, comorbidities, and concomitant medications, the hazard ratio (HR) for those who were adherent to antimalarials was 0.61 (95% confidence interval [CI], 0.40–0.93) as compared to discontinuers, suggesting a protective effect of adherence to antimalarials. In contrast, the HR for those who were non-adherent was 0.78 (95% CI 0.50 to 1.22) as compared to discontinuers. Sensitivity analyses involving permutations of permissible gaps (i.e. 120, 180 days) and PDC cut-off (i.e. 0.80) did not materially change our results.

Conclusions These population-based data show a protective effect of adherence to antimalarials on risk of T2DM in SLE patients. Given the effectiveness of antimalarials in treating SLE as well as additional benefits, findings emphasize the need to raise awareness, among health professionals and patients with SLE, of the importance of adherence to these therapies.

BD-04

CLASSIFICATION OF SLE PATIENTS BASED ON LONGITUDINAL ASSESSMENT OF COMPLEMENT COMPONENT 3 IN RELATION TO COMPLEMENT COMPONENT 4

David R Fernandez*, Mikhail Offerlev, Kyriakos Kirou, Dina Greeman, Keni Merritt, Mary K Crow. Mary Kirkland Center for Lupus Research, Hospital for Special Surgery, New York, NY, USA

10.1136/lupus-2018-lsm.28

Abstracts

BD-05 DISCOVERY OF SERPINA3 AS A CANDIDATE URINARY BIOMARKER OF LUPUS NEPHRITIS CHRONICITY

1Jessica L Turnier*, 2Hermine I Brunner, 3Michael Bennett, 4Ashwaq Aleed, 5Gaurav Gulati, 6Wendy D Haffley, 7Sherry Thornton, 8Michael Wagner, 9Prasad Devajaran, 10David Witte, 11Kenneth D Griss, 12Bruce Aronow. 1Rheumatology, Cincinnati Children’s Hospital Medical Center; 2Nephropathy and Hypertension, Cincinnati Children’s Hospital Medical Center; 3Qassim University College of Medicine, Qassim, Saudi Arabia; 4Immunology, Allergy and Rheumatology, 5Cancer Biology, University of Cincinnati College of Medicine; 6Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA; 7Pathology and Laboratory Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA

10.1136/lupus-2018-lsm.29

Abstracts

Background Systemic lupus erythematosus (SLE) disease activity is characterized by tissue deposition of immune complexes and consumption of complement, which contribute to tissue injury. In clinical practice, it is common to encounter patients where either C3 or C4 is low in isolation, though the clinical implications of variation in C3 relative to C4 are unclear. Here we performed relationship-based clustering of SLE patients based on serum C3 and C4 levels to investigate if this could define distinct clinical subgroups of SLE patients.

Methods C3, C4 and other clinical and laboratory parameters were obtained from our proprietary database. A total of 151 SLE patients having an average of 38 (range 7–117) measurements of C3 or C4 were studied. To classify SLE patients based on the character of the relationship of C3 vs C4, we performed relationship-based clustering approach by defining linear fit parameters (including alpha, beta, standard error, and p values) followed by hierarchical clustering. The clusters obtained were screened in terms of their dependency to clinical data using Chi square test or Fisher’s exact test, as appropriate, with significance defined as p<0.05.

Results Clustering based on multiple characteristics of the relationship between C3 and C4 identified 6 clusters of patients. Clusters 1 and 6 were small and did not have clear phenotypes. Clusters 2 and 5 were both defined by strong correlations between C3 and C4 (Cluster 2 – r=0.81, p<0.00001, Cluster 5 – r=0.81, p=0.0016), though cluster 5 had a lower median C3 level (Cluster 2 C3=79.5, Cluster 5 C3=74.5). Cluster 3 had higher median levels of C3 and C4 (C3=106.0, C4=20.6), and the correlation between C3 and C4 was far less robust (r=0.60, p=0.44730). Cluster 4 was notable for the lowest median C3 and C4 levels (C3=69.8, C4=12.3), and no significant correlation between C3 and C4 was present (r=0.54, p=0.12114).

Individuals in cluster 2 were more likely to have Jaccoud arthropathy (OR 6.11, CI 1.59 to 24.47), or a history of avascular necrosis (AVN) (OR 4.38, CI 1.55 to 12.34), but less likely to have thrombocytopenia (OR 0.15, CI 0 to 0.98). Cluster 5 patients were more likely to have thrombocytopenia (OR 2.78, CI 1.04 to 7.43) and less likely to have AVN (OR 0.27, CI 0.05 to 0.99).

Conclusions C3 and C4 levels vary widely in SLE patients but generally fall into a few general patterns, which are associated with different clinical manifestations, and may provide novel insight into underlying biological differences between SLE patients.

Acknowledgements This work was supported by the Emerald Foundation, the Barbara Volcker Center, and the Lupus and APS Center of Excellence of the Hospital for Special Surgery.