EFFECT OF ANTIMALARIALS OVER THE DIFFERENT DOMAINS OF THE DAMAGE INDEX IN LATIN AMERICAN SLE PATIENTS

1Bernardo Pons-Estelé, 2Daniel Wojdyla, 3Graziela S Alarcón, 4Rosa Maria Serrano, 5Rosana Quintana, 6Manuel Ugarte-Gil, 7Víctor Pimentel-Quiróz, 8Enrique R Soriano, 9Marina Scolnik, 10Mónica Saczyn, 11José A Gómez-Puerta, 12Mario H Cardiel, 13Virginia Pascual-Ramos, 14Ignacio García de la Torre, 15Leonor A Barile, 16Luis H Silveira, 17Mary Carmen Amigo, 18María Josefina Sauza del Pozo, 19Marlene Guibert-Toledano, 20Gil A Reyes, 21Antonio Iglesias Gamara, 22Luis Alonso González, 23Rosa Chacón-Díaz, 24María H Esteva Spinetti, 25Eduardo M Azevedo-Vásquez, 26José Alfaro-Lozano, 27María Inés Segami, 28Loreto Massardo, 29Emilia Sato, 30Lilian Costallat, 31Eloisa Bonfa, 32Luis J Catoggio, 33Joao C Tavares Brenol, 34Francisco Caeiro, 35Ricardo Xavier, 36Fernando Cavalcanti, 37Nilcio A Da Silva, 38Eduardo Fernreia Borba, 39Luis J Catoggio, 40Joao C Tavares Brenol, 41Verónica Saunt, 42Francisco Caeiro, 43Alejandro Alvarellos, 44Judith Sarano, 45Miguel Arias, 46Laura Onett, 47Christina Drenkard, 48Guillermo Berbotto, 49Hugo R Scherbarth, 50Iñigo Alfaro-Lozano, 51José F Molina, 52Gloria Vásquez, 53Guillermo Pons-Estelé. 54Hospital Provincial de Rosario, Argentina; 55GLADEL Consultant, Argentina; 56University of Alabama at Birmingham, USA; 57Hospital Nacional Guillermo Almenara Irigoyen, EsSalud, Peru; 58Hospital Italiano de Buenos Aires, Argentina; 59Universidad de Antioquia, Colombia; 60Centro de Investigación Clínica de Morelia SC, México; 61Instituto Nacional de Ciencias Médicas y Nutrición, México; 62Hospital General de Occidente, México; 63Hospital Ángeles del Pedregal, México; 64Instituto Nacional de Cardiología Ignacio Chávez, México; 65Centro Médico ABC, México; 66Instituto Mexicano de Seguro Social, Hospital de Especialidades No. 75, México; 67Hospital de Investigaciones Médico Quirúrgicas, Cuba; 68Universidad Nacional de Bogotá, Colombia; 69Hospital Universitario de Caracas, Centro Nacional de Enfermedades Reumáticas, Venezuela; 70Hospital Central de San Cristóbal, Venezuela; 71Hospital Nacional Eduardo Rebagliati Martins, ESALUD, Peru; 72Universidad San Sebastián, Chile; 73Hospital del Salvador, Chile; 74Universidade Federal de São Paulo, Brazil; 75Faculdade de Medicina da Universidade de São Paulo, Brazil; 76Universidade Estadual de Campinas, Campinas, Brazil; 77Hospital da Clínicas da Porto Alegre, Brazil; 78Universidade Federal do Pernambuco, Brazil; 79Faculdade de Medicina, Universidade Federal de Goiás, Brazil; 80Hospital Privado Universitario de Córdoba, Argentina; 81Instituto de Investigaciones Médico Quirúrgicas, Cuba; 82Universidad Nacional de Bogotá, Colombia; 83Hospital Universitario de Caracas, Centro Nacional de Enfermedades Reumáticas, Venezuela; 84Hospital Central de San Cristóbal, Venezuela; 85Hospital Nacional Eduardo Rebagliati Martins, ESALUD, Peru; 86Universidad San Sebastián, Chile; 87Hospital del Salvador, Chile; 88Universidade Federal de São Paulo, Brazil; 89Faculdade de Medicina da Universidade de São Paulo, Brazil; 90Universidade Estadual de Campinas, Campinas, Brazil; 91Hospital da Clínicas Porto Alegre, Brazil; 92Universidade Federal do Pernambuco, Brazil; 93Faculdade de Medicina, Universidade Federal de Goiás, Brazil; 94Hospital Privado Universitario de Córdoba, Argentina; 95Instituto de Investigaciones Médico Quirúrgicas, Cuba; 96Universidad Nacional de Bogotá, Colombia; 97HIGA General San Martino La Plata, Argentina; 98Hospital Nacional de Clínicas, Argentina; 99Emory University School of Medicine, USA; 100Sanatorio Británico, Argentina; 101Hospital Interzonal General de Aguadas “Dr. Oscar Alende”; 102Argentina; 103Pontificia Universidad Católica de Chile, Chile; 104Centro Integral de Reumatología, Reumalab, Colombia

Background

We have previously shown that Latin American SLE patients treated with Antimalarials (AMs) have a 25% lower risk of damage accrual than patients not receiving them. The present study was conducted to assess the effects of AMs over the 12 items of the SLICC Damage Index (SDI).

Methods

Patients with a recent SLE diagnosis (<2 years) from the GLADEL cohort were studied. End-point: Increase in the 12 items of the SDI. Table 1. Parameters included in the analysis were demographic, clinical laboratory and treatment variables. The effect of AMs as a time dependent variable on items of the SDI (adjusting for potential confounders) was examined with a multivariable Cox regression model. Multivariate models were developed for the most common SDI items.

Results

Of the 1466 patients included in this analysis 1049 (72%) received AMs during follow-up (as defined); median exposure time: 30 months (Q1-Q3: 11–57 months). Total damage accrual occurred in 665 (45%) patients during a median follow up time of 24 months (Q1-Q3: 8–55 months). Within the 12 items of the SDI there were 301 intervention, 208 renal, 149 neuropsychiatric, 88 musculoskeletal, 88 cardiovascular, 65 ocular, 43 pulmonary, 42 peripheral vascular, 33 gastrointestinal, 22 premature gonadal failure, 16 diabetes and 9 malignancy. After adjusting for potential confounding factors, at any time during follow-up a patient on AMs had a 35% and 30% lower risk of renal and neuropsychiatric damage accrual respectively than a patient not on AMs (adjusted HR 0.65, 95% CI 0.47 to 0.90 and HR 0.70, 95% CI 0.48 to 1.02). Such protective effect was not evident for integument, musculoskeletal and cardiovascular damage. Table 1.

Conclusions

After adjustment for possible confounding factors related to AMs use and damage accrual, AMs were independently associated with a reduced risk of renal and neuropsychiatric damage accrual in this cohort.

Acknowledgements

On behalf of the Grupo Latinoamericano de Estudio del Lupus (GLADEL).

CONTRACEPTIVE DOCUMENTATION IN SYSTEMIC LUPUS ERYTHEMATOSUS PATIENTS AT A SAFETY NET HOSPITAL

Ola Azzouzah, Bonnie L Bemaj*. Division of Rheumatic Diseases, UT Southwestern Medical Center, Dallas, Texas, USA

Background Systemic Lupus Erythematosus (SLE) predominately affects reproductive aged women. Contraceptive counseling is an important quality indicator in SLE patient care. Here we evaluate current practice in the documentation of contraceptive use amongst reproductive aged women with SLE cared for at a large safety net hospital.

Abstract CS-09 Table 1 Multivariable Cox proportional hazard model: time-to-items damage accrual

<table>
<thead>
<tr>
<th>Endpoint</th>
<th>Unadjusted</th>
<th>Adjusted</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HR (95% CI)</td>
<td>p-value</td>
</tr>
<tr>
<td>Integument Damage</td>
<td>0.987 (0.763–1.277)</td>
<td>0.9223</td>
</tr>
<tr>
<td>Renal Damage</td>
<td>0.516 (0.385–0.692)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Neuropsychiatric Damage</td>
<td>0.651 (0.458–0.925)</td>
<td>0.0167</td>
</tr>
<tr>
<td>Musculoskeletal Damage</td>
<td>0.838 (0.524–1.340)</td>
<td>0.4612</td>
</tr>
<tr>
<td>Cardiovascular Damage</td>
<td>0.562 (0.357–0.886)</td>
<td>0.0130</td>
</tr>
</tbody>
</table>

1Hazard ratio for any antimalarial vs no antimalarial in the previous month.
2Adjusted for integument domain SDI at entry, hypertension, malar rash, discoid rash, proteinuria/cilindruria, hematologic disorder, glucocorticoid pulse and SLEDAI at cohort entry.
3Adjusted for renal domain SDI at entry, age at diagnosis, socio-economic level, hypertension, proteinuria/cilindruria, immunosuppressants and SLEDAI at cohort entry.
4Adjusted for neurologic domain SDI at entry, glucocorticoid pulse, NSAIDs and SLEDAI at cohort entry.
5Adjusted for musculoskeletal domain SDI at entry, gender, hypertension, discoid rash, oral/upper respiratory ulcers, arthritis, neurologic disorder, glucocorticoids at cohort entry.
6Adjusted for cardiovascular domain SDI at entry, disease duration, hypertension and serositis at cohort entry.