LUPUS NEPHRITIS IS LINKED TO DYSBIOSIS, INCREASED A NEW B CELL EFFECTOR PATHWAY WITH DEFECTIVE ICs in FcγRs in humans, transgenic FcγRIIA (FcγRIIA	extsuperscript{GN}) mice expressing FcγRIIA on platelets and certain leukocytes, were used in this study. As acute model, we intravenously injected ICs in FcγRIIA	extsuperscript{null} mice and monitored mouse reaction and platelet activation. To model platelet response to chronic exposure to ICs, we backcrossed NZB mice with FcγRIIA	extsuperscript{GN} mice, generating NZB::FcγRIIA	extsuperscript{GN} mice and crossed the mice with NZW mice, thus generating NZB::NZW::FcγRIIA	extsuperscript{GN} mice. We found significant platelet activation and circulating degranulated platelets, uniquely in mice expressing FcγRIIA.

Conclusions Platelet activation in IC-mediated pathogenesis is well recognized. In lupus patients, platelets are found activated in blood circulation, however, to what extend ICs and FcγRIIA contribute to platelet activation was unknown. Here, we showed that the expression of FcγRIIA is critical to adequately examine platelet role in lupus.

Acknowledgements This work was supported by a Foundation grant from the Canadian Institutes of Health Research (CIHR) to EB. PRF is recipient of a tier 1 Canada Research Chair on Systemic Autoimmune Rheumatic Diseases. NT and IM are recipient of fellowships from The Arthritis Society.

LUPUS NEPHRITIS IS LINKED TO DYSBIOSIS, INCREASED GUT LEAKINESS AND IMMUNITY TO AN INTESTINAL COMMENSAL LACHNOSPIRACEAE SPECIES

1Gregg J Silverman*, 2Doua F Azzouz, 3Brad H Rowin, 4Roberto Caricchio, 5 Jill P Buyn, 6Alexander Alekseyenko, 7Department of Medicine, New York University School of Medicine, New York, NY, USA; 8Division of Nephrology, Ohio State University Medical Center, Columbus, OH, USA; 9Medicine/Rheumatology, Temple University, Philadelphia, PA, USA; 10Medical University of South Carolina, Charleston, SC, USA

Background A transmissible agent has long been suspected in the pathogenesis of SLE, yet the potential contribution of the human intestinal microbiome has been little examined. We therefore characterized the gut microbiota of patients with SLE, with special interest in those with lupus nephritis (LN).

Methods Blood and fecal samples from SLE patients were obtained, with strict inclusion/exclusion of criteria. Fecal 16S rDNA sequencing, as well as cytokine and autoantibody assays were performed. In addition, sera from two independent lupus cohorts were studied for validation. Biomarkers of gut leakiness were assessed.

Results Compared to controls, the intestinal microbiome from SLE patients (n=61) showed decreased species richness diversity with reductions in taxonomic complexity most pronounced in those with high disease activity. Notably, SLE patients had an overall 5-fold greater representation of a species in the Lachnospiraceae family of obligate anaerobic Gram-positive cocci, with reciprocal contractions of two other commensal species with putative protective properties. Abundance of the Lachnospiraceae species correlated with serum IgG to a cell wall component, postulated to represent a lipoglycan, from a strain of this same species (p=0.002, n=61, Spearman) but not with 7 other strains. There was also a significant direct correlation between SLEDAI scores and levels of these circulating anti-strain IgG antibodies (p=0.02, n=48). Levels of antibodies to strain-specific bacterial antigen, treated with RNAse/DNase/protease K, were significantly higher in those with active nephritis at time of sampling compared to SLE without renal activity (Cohort 1 p=0.01 n=48; Cohort 2 p=0.006, n=28, Mann-Whitney). Levels of serum IgG anti-stain antibodies also significantly correlated with high-titer serum IgG to native DNA (p<0.0001, n=27), and inversely correlated with C3 and C4 levels. High titers of these anti-bacterial antibodies were associated with active Class III, IV and V (overlap) LN (Cohort 3).

Conclusions These findings suggest a novel paradigm for the pathogenesis of LN in which a common intestinal commensal bacteria may contribute to the immune-complex mediated disease process, with features akin to poststreptococcal GN but without outward signs and symptoms of clinical infection.

Acknowledgement Judith and Stuart Colton Foundation, NIAMS- P50 AR070591.

A NEW B CELL EFFECTOR PATHWAY WITH DEFECTIVE NEGATIVE REGULATION OF TLR7 SIGNALING IN HUMAN SLE

1Scott A Jenks, 2Kevin S Cashman, 3Urko M Marigorta, 4S Sam Lim, 5Michelle Petri, 6Jennifer Anolik, 7Ignacio Sanz*. 1Department of Medicine, Division of Rheumatology, Lowsen Center for Human Immunology, Emory University, Atlanta, Georgia, USA; 2School of Biology and Center for Integrative Genomics, Georgia Institute of Technology, Atlanta, GA, USA; 3Hopkins Lupus Center, Department of Medicine, Johns Hopkins University, Baltimore, MD, USA; 4Department of Medicine, Division of Allergy, Immunology and Rheumatology, University of Rochester Medical Center, Rochester, New York, USA

Background B cell homeostasis is perturbed in SLE patients. In particular, many patients have a large expansion of IgD-CD27- B cells (DN). The DN population is heterogeneous for CXCR5 expression, and CXCR5- DN2 are the majority population in SLE patients but not in HCD (figure 1A). To further understand how these expanded cells differ from other B cell subsets and how they may be dysregulated in SLE, we phenotypically and functionally characterized DN2 in SLE patients and healthy control donors (HCD).

Methods B cells subsets were quantified by flow cytometry in HCD and two separate cohorts of lupus patients. Purified DN2 and other B cell subsets were flow sorted and transcriptionally analyzed using RNA sequencing. Toll-like-receptor 7 (TLR7) signaling after stimulation with R848 was measured by staining with anti-phospho-tyrosine specific anti-ERK. Antibody secreting cell differentiation was induced using in vitro stimulation of sorted B cell subsets with a combination of TLR7 and cytokines.

Results DN2 were only a minor B cell subset in HCD (less than 5%) but were elevated in 20% of cohort 1 patients and 60% of cohort 2 (figure 1B). In the patients with the largest