remission reduced organ damage. LLDAS on treatment >50% of the time, which led to a 50% reduction in organ damage, is an easier goal to achieve (3 times more person-months observed in our cohort) and more realistic as a clinical trial outcome.

Acknowledgements The Hopkins Lupus Cohort is funded by NIH AR 43727 and NIH AR 69572.

CS-29 CREATION OF A WEIGHTED SLICC SLE CLASSIFICATION CRITERIA AND COMPARISON WITH OTHER SLE CLASSIFICATION CRITERIA

1Michelle Petri*, 1Daniel Goldman, 1Laurence S Magder, 1Johns Hopkins University School of Medicine, Baltimore, MD, USA; 2University of Maryland, Baltimore, MD, USA

10.1136/lupus-2018-lsm.64

Background In previous validation work, the SLICC 2012 SLE classification criteria were more sensitive than the revised ACR-11 criteria, while both criteria had similar agreement with physician diagnoses. Both of these classification rules count each SLE manifestation equally. Our objective was to derive and test a classification rule which differentially weights the variable used in the SLICC classification rule. We also compared this rule to a recently proposed EULAR/ACR classification rule that also uses a weighted approach. [Costenbader KH, Johnson S, Aringer M. EULAR/ACR Classification Criteria Update for SLE. Presented at the 2017 ACR/ARHP Annual Meeting, San Diego CA, November 4–8, 2017].

Methods The physician-rated patient scenarios used to develop the 2012 SLICC classification criteria were re-employed to devise a weighted classification rule. A multiple linear regression model was constructed with the 2012 SLICC criteria variables as predictors and the binary outcome (physician classification of SLE) as the outcome. Weights for each criteria were generated by multiplying each criteria’s coefficient by 100 and rounding to the nearest integer. The ‘Direct Coombs’ criteria was deleted for simplicity. Weights for remaining manifestations were: acute cutaneous (26), chronic cutaneous (12), oral ulcers (16), arthritis (9), serositis (16), renal without biopsy (9), neurologic (9), hemolytic anemia (1), leukopenia or lymphopenia (14), thrombocytopenia (15), alopecia (9), ANA (17), anti-dsDNA (19), anti-Sm (16), antiphospholipid antibodies (8), low complement (11). Classification cutoff was the score that maximized overall agreement (i.e., the sum of sensitivity and specificity) of the new weighted criteria with physician diagnosis. Patients with lupus nephritis or the new weighted classification rule of 56 or more with at least one clinical component and one immunologic component were classified as SLE. We evaluated the performance of this revised SLICC criteria on an independent set of patient scenarios and compared this to the performance of the older revised ACR criteria, the previous SLICC 2012 criteria, and the newly proposed EULAR/ACR criteria.

Results Table 1 shows the performance of the four classification rules. There was no statistically significant difference between any pair of rules with respect to overall agreement with the physician diagnosis.

Conclusions The two newly derived weighted classification rules did not perform better than the existing list-based rules in terms of overall agreement. Since the list-based rules are easy to calculate, they may be preferred in most clinical settings.

<table>
<thead>
<tr>
<th>Classification Rule</th>
<th>Sensitivity (n=349)</th>
<th>Specificity (n=341)</th>
<th>Overall Agreement (n=690)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Revised ACR-11</td>
<td>329 (93%)</td>
<td>326 (96%)</td>
<td>616 (89%)</td>
</tr>
<tr>
<td>SLICC 2012</td>
<td>340 (97%)</td>
<td>288 (84%)</td>
<td>652 (92%)</td>
</tr>
<tr>
<td>Proposed EULAR/ACR</td>
<td>317 (89%)</td>
<td>302 (90%)</td>
<td>649 (90%)</td>
</tr>
<tr>
<td>Weighted SLICC 2012</td>
<td>310 (88%)</td>
<td>304 (89%)</td>
<td>644 (89%)</td>
</tr>
</tbody>
</table>

Acknowledgements Presented on behalf of SLICC. The Hopkins Lupus Cohort is funded by NIH AR 43727 and NIH AR 69572.

CS-30 SLEEP DISTURBANCE AMONG WOMEN WITH SYSTEMIC LUPUS ERYTHEMATOSUS (SLE)

1Patricia Katz*, 2Sofia Pedro, 2,Kaleb Michaud, 1University of California San Francisco; 2Forward/National Data Bank for Rheumatic Diseases; 1University of Nebraska Medical Center

10.1136/lupus-2018-lsm.65

Background Sleep disturbances (SD) are reported to be common in SLE, but relatively few studies have addressed the issue. We examined the frequency and severity of self-reported SD among individuals with SLE and predictors of SD.

Methods Data were from the National Data Bank for Rheumatic Diseases (NDB), for which participants complete questionnaires every 6 months. In one questionnaire, items about the presence of physician-diagnosed obstructive sleep apnea (OSA) and restless-leg syndrome (RLS), symptoms of OSA and RLS, and the Medical Outcomes Study Sleep Scale (MOS-S) were included. The MOS-S yields 5 subscales; results are shown here only for one (Sleep Problems Index I, SPI-I). Frequencies of reports of OSA, RLS, and RLS symptoms were tabulated. Multivariate regression analyses identified independent predictors of OSA and RLS (logistic regression) and SPI-I scores (linear regression). Potential predictors included age, race, education, smoking, Rheumatic Disease Comorbidity Index (RDCI),1 asthma, obesity (BMI ≥30 kg/m²), disease duration, pain, prednisone and other medication use, and disease activity (Systemic Lupus Activity Questionnaire, SLAQ) and damage (Brief Index of Lupus Damage, BILD)1.

Results Subjects (n=362) were mean age 61±13 years and had SLE duration of 26±13 years. 23% reported physician-diagnosed OSA and 20% RLS, compared to ~2–4% and ~10%, respectively, in the general population. 18% and 34% had symptoms of OSA and RLS, respectively. Mean SPI-I was 39.6 (±20.2), >0.5 standard deviation higher (worse) than a population mean. Independent predictors of diagnosed OSA were greater age, obesity, asthma, RDCI, and disease activity (table 1). Predictors of RLS symptoms were RDCI and disease activity (table 1). Worse scores on SPI-I were associated with younger age, low education, higher RDCI, smoking, and greater pain and disease activity (table 1).

Conclusion Both OSA and RLS were more common in SLE than in the population; SPI-I scores were also worse. Some predictors of SIs were similar to predictors in the population (age, obesity), but disease activity was also associated with SD.