Results 535 persons with SLE were interviewed in each year from 2003 to 2015 (94% female, 63% non-Hispanic whites, mean age in 2003 50 years, range 20–83, mean disease duration 17 years, range 1–51). Between 2003 and 2009, 81% were never poor, 8% exited poverty, and 11% were poor in every year. 89 of the 535 (16.6%) met the study definition of prevalent persistent depression; 23 (7.4%) of the 312 free of high levels of depressive symptoms from 2006–2009 had incident persistent depression as of 2015. Table 1, below, indicates that those who were poor in every year had significantly higher rates of prevalent and incident persistent depression than those exiting poverty or never poor.

Conclusions Public policy to help persons with SLE stay out of poverty or to exit poverty may lower their rates of prevalent and incident persistent depression. Attention to the economic status of persons with SLE should be part of an overall treatment strategy including treatment for depression since such attention may help reduce accumulation of damage as well as reduce the prevalence and incidence of persistent depression.

Abstract EF-02 Table 1 Odds ratios (95% CI) for effect of poverty status between 2003 and 2009 on prevalent and incident persistent depression (CESD score ≥24 in 3 or more years), between 2009 and 2015, with and without adjustment

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Poor every year</th>
<th>Exited poverty</th>
<th>Never poor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prevalent Persistent Depression</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(n=535)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unadjusted†</td>
<td>3.9 (2.1, 7.2)</td>
<td>1.0 (0.4–2.2)</td>
<td>Ref.</td>
</tr>
<tr>
<td>Adjusted†</td>
<td>2.8 (1.4, 6.1)</td>
<td>0.8 (0.3–1.8)</td>
<td>Ref.</td>
</tr>
<tr>
<td>Incident Persistent Depression</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(n=312)‡</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unadjusted†‡</td>
<td>4.5 (1.3, 15.4)</td>
<td>0.9 (0.2–3.9)</td>
<td>Ref.</td>
</tr>
<tr>
<td>Adjusted‡</td>
<td>4.1 (0.9–19.1)</td>
<td>0.7 (0.1–3.7)</td>
<td>Ref.</td>
</tr>
</tbody>
</table>

*p<0.01
† Adjusted for gender, age, marital status, race/ethnicity, education, disease duration, extent of accumulated damage as of 2009, smoking status, and BMI
‡ Excludes persons with high levels of depressive symptoms 2006–2009

Acknowledgements Robert Wood Johnson Investigator in Health Policy Award; NIAMS P60 AR-053308, NIAMS 2R01-AR-056476.

REFERENCES

EF-03

MICROBIOTA-ASSOCIATED TRYPTOPHAN CATABOLISM INDUCES AUTOIMMUNE ACTIVATION IN A MOUSE MODEL OF LUPUS

Seung-Chul Choi, Josephine Brown, Tim Garrett, Laurence Morel*. Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, USA

10.1136/lupus-2018-ism.83

Background Tryptophan (Trp) is an essential amino acid that is used for the biosynthesis of key compounds such as serotonin (5HT), kynurenine (Kyn), and AhR ligands. The gut microbiome is a critical participant in Trp metabolism through which it modulates many biological pathways, including immune activation with the generation of AhR ligands. High Kyn and low 5HT levels have been found in patients with SLE. Disturbances in gut bacterial communities, defined as dysbiosis, have been found in lupus patients and lupus mice. Moreover, a recent study demonstrated that the translocation of gut pathobiont in a lupus mouse model as well as in SLE patients related with autoimmune pathogenesis. The hypothesis tested in this study is that the interplay between gut microbiota, Trp metabolism, and genetic susceptibility modulates systemic autoimmunity.

Methods We used the B6.Sle1.Sle2.Sle3 (TC) lupus-prone mouse model that shares over 95% of its genome with control B6 mice. Sequencing of fecal 16S rDNA was performed by standard methods. Serum and feces Trp metabolites were quantified by mass spectroscopy. Gnotobiotic (GF) B6 mice were colonized with feces from either TC or B6 mice, their immune phenotypes analyzed 4 weeks later. The immunophenotypes of TC mice analyzed after 4 month exposure to various levels of dietary Trp.

Results TC and B6 mice have a distinct gut microbiota, and transfers of TC fecal microbiota induce a transient autoimmunity in GF B6 mice. Autoimmune activation was also mitigated by horizontal microbiota transfers between co-housed TC and B6 mice. As SLE patients, TC mice present high Kyn and low 5HT levels in their serum and feces, and this metabolite imbalance was eliminated by a broad-spectrum antibiotic treatment. Furthermore, variations in dietary Trp modulated autoimmune pathogenesis: a low Trp diet prevented the development of autoimmunity while a high Trp diet accelerated disease progression, and the production of their anti-dsDNA IgG was positively correlated with their Kyn level. Finally, feces from TC mice fed with high Trp levels induced a higher autoimmune activation than feces from TC mice fed with low Trp levels in GF B6 mice.

Conclusions These results demonstrate the existence of interactions between lupus susceptibility genes and gut dysbiosis, where the full disease phenotype requires the presence of both. Furthermore, our results suggest that gut dysbiosis alters Trp metabolism in genetically lupus susceptible mice by expanding Trp-catabolizing bacteria and that some of these alterations contribute to autoimmune activation.

Acknowledgements Supported by R21 AI122338 to LM.

EF-04

ASSOCIATION OF ULTRAVIOLET-B RADIATION AND RISK OF SLE AMONG WOMEN IN THE NURSES’ HEALTH STUDIES

1Medha Barbhaiya*, 2Jaime E Hart, 3Susan Malpeis, 4Sara K Tedeschi, 5Trang VoPham, 6Jeffrey A Sparks, 7Elizabeth W Karlson, 8Francine Laden, 9Karen H Costenbader.
1Department of Medicine, Division of Rheumatology, Hospital for Special Surgery; 2Division of Rheumatology, Immunology and Allergy, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA; 3Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA; 4Department of Epidemiology, Harvard T. H. Chan School of Public Health

10.1136/lupus-2018-ism.84

Background Ultraviolet-B radiation (UV-B) exposure may lead to worsened photosensitivity, rashes, and systemic flares among SLE patients. Although UV-B radiation damages keratinocytes and may result in production of novel forms of autoantigens, it remains unknown whether UV-B exposure increases the risk of developing SLE. We aimed to examine the association of UV-B exposure with risk of incident SLE in a large