autoimmunity for several years prior to the onset of clinical disease. Measuring anti-nuclear antibodies (ANA) is a common test for humoral autoimmunity. It is sensitive (95%+) for SLE, but not specific as up to 25% of healthy controls (HC) will have a measurable ANA. While very few of the ANA+HC will develop SLE, they represent a group at higher risk of the disease. Understanding the risks for ANA positivity provides essential knowledge about the development of SLE.

Methods Serum and DNA were collected from 2903 healthy individuals with no personal history of autoimmunity. Antibodies were detected using Inova QuantaLite ELISA. Sera from subset (n=724) individuals (ANA− HC, ANA+ HC, and SLE) were assayed by protein microarray quantifying IgM and IgG responses to 89 previously known human auto-antigens. A nested cohort consisting of all the ANA+Caucasian individuals and age/gender matched ANA− controls were genotyped using the ImmunoChip.1 SNP array.

Results In HC, 16% had moderate and 10% had high levels of IgG ANA. Autoantigen microarray data showed that ANA+ HC had a high prevalence of antibodies to non-nuclear and cytoplasmic antigens while subjects with SLE predictably produced antibodies to a variety of nuclear antigens as well. A quantitative genetic association test with ANA identified the locus c11orf30 or EMSY, associated with high ANA phenotype in the healthy population (see figure 1). This locus codes for a negative transcriptional regulator. A haplotype comprised of many potentially regulatory polymorphisms at EMSY contributed to strong risk for ANA in healthy individuals ([p=3.83E-04, OR=2.6]). eQTL data suggests that the ANA-associated EMSY haplotype leads to reduced expression of EMSY protein in human macrophages and EBV cell lines. Autoantibody profiles of serum samples from healthy individuals with the EMSY risk genotype exhibited high titers of anti-IgG and IgA antibodies targeted to multiple autoantigens as well as food and environmental allergens.

Conclusions EMSY, a locus previously linked with atopy, psoriasis and inflammatory bowel disease was associated with ANA in healthy individuals. The EMSY protein is a BRCA2-associated transcriptional repressor. Individuals with risk haplotypes in EMSY make a wide variety of disease-associated antibodies, suggesting an early common pathway for autoimmune and allergic conditions.

GG-08 IMMUNE REPERTOIRE AND GENETIC RISK ALLELES IN HEALTHY PEDIATRIC POPULATIONS WITH AUTOIMMUNE INDICATORS

1Pritivi Raj, 1Patricia Pichilingue-Reto, 1Igor Dozmorov, 1Run Song, 1Chaoqin Liang, 1Bo Zhang, 1JinChun Zhou, 1Erika Molina, 1Prithvi Raj*, 1Patricia Pichilingue-Reto, 1Igor Dozmorov, 1Ran Song, 1Chaoying Liang, 1Edward K. Wakeland. Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX USA; 2Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX USA; 3Feinstein Institute for Medical Research, Manhasset, New York USA; 4Oklahoma Medical Research Foundation, Oklahoma City, OK USA; 5Rheumatic Diseases Division, University of Texas Southwestern Medical Center, Dallas, TX USA; 6Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX USA.

Background The antibody specificities of an infant progressively form in response to infections, environmental exposures, and vaccinations. While many adults develop antibodies to self-antigens, it remains unknown if these are present in infants and toddlers.

Methods Serum, peripheral blood, and clinical data have been collected from 102 healthy children (1–2 year of age). ANA titers were measured by Quantile ELISA (Inova) and reactivity to 125 diverse autoantigens tested by autoantibody array. Targeted sequencing was performed in 60 children to capture HLA alleles and potentially pathogenic genetic variations in 100 plus loci that are implicated in autoimmune, rheumatic and immune system related diseases. Sequencing libraries were made using KAPA Biosystems kits. Custom target oligos were synthesized from Nimblegen. Deep sequencing was performed using Illumina HiSeq 4000 platform. Sequencing reads were aligned to reference genome and variants were called using GATK Pipeline. Secondary data analysis is done using Metlab, GraphPad Prism, Haplovie and Golden Helix programs.

Results Approximately 28% of very young children have moderate to high-titer autoantibodies, similar to adults, however, no female gender bias was observed. Significant differences between the child and adult immune repertoires were seen. Some samples demonstrated strong signatures of non-nuclear antigens reactivities. Interestingly, the ANA positive group of children exhibited significantly high titers of anti-alpha fodrin IgG (p=0.01), an autoantibody reported in juvenile Sjogren’s syndrome. Analysis of sequencing data identified regulatory polymorphisms in HLA class II and III regions that were associated with ANA positivity. About 8% of the ANA positive children also carried autoimmune disease associated HLA-DR-DQ alleles. HLA alleles and regulatory haplotypes were analyzed in relation to various clinical features in children. Serum C4 level measured in subset of ANA positive children identified few with reduced expression.

Conclusions While the immune repertoire of very young children is typically thought of as naive and self-tolerant, a significant fraction of very young children makes autoantibodies as detected by commercial ANA ELISA and autoantigen arrays. This supports the conclusion that ANA and other autoantibodies are consequences of general body development and immune upregulation and not markers of pathology. One of the major genetic determinants of ‘pre-clinical’ autoimmunity as measured by ANA is the human major histocompatibility locus, HLA. Within HLA, several ‘endophenotypes’ emerge, including expression of a complement protein involved in immune complex removal, as well as multiple proteins associated with antigen presentation, including MHC class II. These findings support the idea that there is quantifiable genetic risk for the development of autoimmunity that can be measured in very young individuals.

GG-09 A ROLE FOR EBNA2 IN MECHANISMS THAT ARE RESPONSIBLE FOR LUPUS AND OTHER AUTOIMMUNE DISEASES

1,2,3,4,JB Harley*, 1X Chen, 1M Pujato, 1D Miller, 1A Maddox, 1C Forney, 1AF Magnusen, 1A Lynch, 1K Chetel, 1M Yawata, 1,2,3,4,K Barish, 1,2,3,4,5,SN Salomon, 1,2,3,4,KM Kaufman, 1,2,3,4,5,LC Kotayan, 1,2,3,4,5MT Weihaus. Center for Autoimmune Genomics and Etiology (CAGE); 1Division of Immunobiology; 2Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio; 3Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio; 4US Department of Veterans Affairs Medical Center, Cincinnati, Ohio; 5Division of Biomedical Informatics; 6Division of Allergy and Immunology; 7Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA.

Background Explaining the genetics of many diseases is challenging because most associations localize to incompletely understood regulatory regions.
Methods We show that transcription factors (TFs) occupy multiple loci of individual complex genetic disorders much more than expected by chance using novel computational methods.

Results Application to 213 phenotypes and 1,544 TF binding datasets identifies 2,264 relationships between hundreds of TFs and 94 phenotypes, including AR in prostate cancer and GATA3 in breast cancer. Strikingly, nearly half of the systemic lupus erythematosus risk loci are occupied by the Epstein-Barr virus (EBV) Nuclear Antigen 2 (EBNA2) protein (OR=6, P<10E-24 after Bonferroni correction), which co-clusters with a sub-set (<60) human TFs, revealing gene-environment interaction, and identifying the EBV transformed B cell as a putative site for some of the genetic mechanisms altering disease risk. Analogous EBNA2-anchored associations exist in multiple sclerosis, rheumatoid arthritis, inflammatory bowel disease, type 1 diabetes, juvenile idiopathic arthritis, and celiac disease. Instances of allele-dependent DNA binding with downstream effects on gene expression at plausibly causal variants are consistent with EBNA2 dependent genetic mechanisms.

Conclusions Our results nominate mechanisms that operate across risk loci within disease phenotypes; they suggest new paradigms for disease origin and strongly support a role for Epstein-Barr virus in the generation of systemic lupus erythematosus, as well as of particular other autoimmune diseases, apparently related to lupus by the genomic mechanisms that produce them.