Methods We show that transcription factors (TFs) occupy multiple loci of individual complex genetic disorders much more than expected by chance using novel computational methods.

Results Application to 213 phenotypes and 1,544 TF binding datasets identifies 2,264 relationships between hundreds of TFs and 94 phenotypes, including AR in prostate cancer and GATA3 in breast cancer. Strikingly, nearly half of the systemic lupus erythematosus risk loci are occupied by the Epstein-Barr virus (EBV) Nuclear Antigen 2 (EBNA2) protein (OR=6, P<10E-24 after Bonferroni correction), which co-clusters with a sub-set (<60) human TFs, revealing gene-environment interaction, and identifying the EBV transformed B cell as a putative site for some of the genetic mechanisms altering disease risk. Analogous EBNA2-anchored associations exist in multiple sclerosis, rheumatoid arthritis, inflammatory bowel disease, type 1 diabetes, juvenile idiopathic arthritis, and celiac disease. Instances of allele-dependent DNA binding with downstream effects on gene expression at plausibly causal variants are consistent with EBNA2 dependent genetic mechanisms.

Conclusions Our results nominate mechanisms that operate across risk loci within disease phenotypes; they suggest new paradigms for disease origin and strongly support a role for Epstein-Barr virus in the generation of systemic lupus erythematosus, as well as of particular other autoimmune diseases, apparently related to lupus by the genomic mechanisms that produce them.

GG-10 FEASIBILITY OF CONDUCTING EPIGENETIC ANALYSIS IN PEDIATRIC LUPUS B CELLS

Background Bennett et al identified the presence of interferon gene expression signatures in peripheral blood of children with systemic lupus erythematosus (pSLE). Here, we aim to identify how B cells contribute to these signatures. We hypothesize that disordered transcription in pSLE will be prominent in B cells and attributed to disease-specific epigenetic alterations. Thus we will not only identify important disease mechanisms in SLE, we will shed light on the genetics of SLE. Our previously published work demonstrated that most of the genetic risk for SLE located within non-coding regions of the genome appears to also contain higher than baseline epigenetic modifications of DNA and transcription factor binding sites that regulate and coordinate transcription.

Methods Our specific aim is to assess regions of open chromatin in untreated pSLE and compare findings with healthy children. We propose to use assays of transposase-accessible chromatin with sequencing (ATACseq) to broadly survey open regions of chromatin and clarify the functional epigenome. In this pilot study, we propose to determine feasibility of performing this assay and developing methods for data analysis using 5 pediatric lupus patients and 5 healthy children.

Anticipated results and conclusions Our long-term goal is to gain a mechanistic understanding of the aberrant transcriptional signatures in untreated SLE. The data generated by this pilot study will provide the basis for a rigorous power analysis, and firmly establish the working relationship between the Buffalo and Cohen Children’s Medical Center groups, both of which will be essential for a competitive application to NIH. Our preliminary findings from this pilot study will also allow us to begin the exciting process of linking the genetics and epigenetics of pSLE to the well-established transcriptional aberration.

Acknowledgements This study is funded, in part, by an Arthritis Foundation-Childhood Arthritis and Rheumatology Research Alliance Small Pilot Grant.
of family members and improved therapy for patients and families.

Acknowledgements Childhood Arthritis and Rheumatology Research Alliance (CARRA) Small Grant, McLaughlin Centre, University of Toronto.

GG-12 ABSTRACT WITHDRAWN

GG-13 'EPITOF' – A NEW METHOD FOR CHARACTERIZING THE EPIGENETIC LANDSCAPE IN SLE

Paul J Utz*, Department of Medicine, Division of Immunology and Rheumatology, Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA

10.1136/lupus-2018-lsm.99

Background SLE is a complex disease with very few approved therapeutic options. Unique opportunities exist to characterize blood cells, tissues such as kidney and skin, urine, serum and plasma as part of ongoing longitudinal cohort studies such as Accelerating Medicines Partnership (AMP) and Autoimmunity Centers of Excellence (ACE), and investigator initiated or company-sponsored clinical trials. The epigenome, in particular, is an area of great interest.

Materials and methods We have recently published a new method called Epigenetic Time of Flight (EpiTOF), a mass cytometry based method that enables broad characterization of posttranslational modifications (PTMs) of histones in health and disease. Our initial studies demonstrated marked heterogeneity in younger vs older healthy adults. Twin studies showed that ~70% of variation is related to environment. Twenty-two different populations of blood cells were profiled, and the PTMs alone were sufficient to identify cell populations, even in the absence of cell surface markers.

Results Blood derived from multiple diseases was provided through the ACE Collaborative Network and local Stanford investigators and subjected to EpiTOF analysis followed by complex computational analysis. I will present ongoing studies in SLE, SSc, RA, IBD, JIA, vaccines, and infectious diseases using EpiTOF.

Conclusions EpiTOF and other multiplexed assays (such as autoantibody profiling) of samples derived from SLE patients, as well as patients with related autoimmune diseases, have tremendous potential and should be included in all clinical trials, with a goal to better understand pathogenesis and to identify novel therapeutic targets.

Acknowledgements NIAID/DAIT, Henry Gustav Floren Trust, Baxter Foundation, and many patients with SLE who have provided samples.

Innate Immunity

II-01 TLR9-DEFICIENCY EXACERBATES AUTOIMMUNE DISEASE IN MODELS OF SLE AND CUTANEOUS LUPUS THROUGH B CELL INDEPENDENT MECHANISMS

1Kerstin Nundel, 2Anette Christ, 3Purvi Mande, 3Wei-Che Ko, 3John E Harris, 2Eicke Latz, 1Ann Marshak-Rothstein*. 1Department of Medicine, University of Massachusetts School of Medicine, Worcester, Massachusetts, USA; 2Institute of Innate Immunity, University Hospital Bonn, University of Bonn, Bonn, Germany; 3Department of Dermatology, University of Massachusetts School of Medicine, Worcester, Massachusetts, USA

10.1136/lupus-2018-lsm.100

Background TLR9 appears to play both a protective and a disease-promoting role in animal models of SLE. Even though TLR9 is required for the production of anti-dsDNA and anti-nucleosome autoantibodies, TLR9-deficient autoimmune-prone mice invariably develop more severe disease than their TLR9-sufficient counterparts. Molecular mechanisms that account for this paradoxical function of TLR9 have mainly been explored in cell lines to a large extent and have focused on competition between TLR7 and TLR9 for binding to Unc93B1 and the ability to access to the appropriate signaling compartment. Our own in vitro comparison of bone marrow derived macrophages and bone marrow derived dendritic cells, obtained from TLR9-sufficient vs TLR9-deficient mice and stimulated with TLR7 ligands, suggested that the impact of TLR9-deficiency might be highly cell type specific, and led us to focus on primary cells obtained fro animal models of systemic autoimmunity.

Methods We initially used pristane-injected BALB/c mice as a model of SLE, and found that TLR9-deficiency led to exacerbated renal disease and the accumulation of an unusual myeloid subset in the kidneys of these mice. We have directly examined the contribution of TLR9-deficient and TLR9-sufficient cells in these mice using a mixed bone marrow chimera strategy. We have also developed an inducible rapid onset model of cutaneous lupus that depends on the injection of OVA-specific T cells into mice that express an OVA fusion protein on class II+cells; here, TLR9-deficient and TLR7-sufficient recipients develop cutaneous lesions with many of the features of discoid lupus within 4 weeks of T cell injection. Cells isolated from the kidneys of the BALB/c pristane mice and the skin of the cutaneous lupus mice have been further characterized by flow cytometry and gene expression.

Results These studies have identified a myeloid subset present at sites of inflammation and in normal peripheral blood that appears to be uniquely impacted by the loss of TLR9. Functional properties of these cells will be discussed.

Conclusions TLR9 deficiency impacts very specific myeloid subsets apart from its effects on B cell development and differentiation.

Acknowledgements This project has been supported by the Lupus Research Alliance and NIAMS.