Background Belimumab has a therapeutic benefit in active SLE, especially in patients with high titers of anti-dsDNA antibodies. The current study was designed to address whether the profound loss of naïve B cells in belimumab treated patients is accompanied by a shift in the immunoglobulin repertoire of either mature B cells or plasma cells.

Methods 15 SLE patients who had been continuously treated with belimumab 10 mg/kg monthly for >5 years were matched with 17 SLE controls. 5 SLE patients newly starting belimumab were studied before and 6 months after drug initiation. B cell phenotyping was performed using flow cytometry. Mature B cells and plasmablasts were sort purified, VH libraries were generated using barcoded primers (iReper-toire) and pooled libraries were sequenced using miSeq. Analyses of unmutated and mutated IgM sequences from mature B cells and all sequences from plasmablasts were performed using customized Perl and R scripts.

Results Phenotyping – novel findings:
1. BAFF regulates the transitional B cell checkpoint with conservation of transitional type 1 cells and ~90% loss of transitional type 3 and naïve B cells after chronic belimumab treatment.
2. Neither ‘naïve activated’ B cells nor CD21hi B cells subset are preferentially depleted by belimumab.
3. The early increase in CD27+ class switched cells after belimumab treatment is due to an increase in memory B cells rather than B1 cells.
4. After >5 years of treatment, class switched memory B cells, B1 B cells and plasmablasts are also substantially depleted.

Next Generation Sequencing of VH genes:
1. There was no redistribution of V, D or J family usage among unmutated IgM sequences.
2. There was no effect of belimumab on the frequency of the autoreactive VH4–34 gene or on CDR3 length or composition in unmutated IgM sequences.
3. There was a significantly greater loss of VH4–34 among mutated IgM sequences and plasmablast sequences compared with unmutated sequences in subjects treated with chronic belimumab than in lupus controls.

Conclusions Although BAFF highly regulates survival of naïve B cells past the T1 stage in humans, we were unable to identify an effect of belimumab on VH distribution or CDR3 composition of naïve B cells, suggesting a minimal effect on selection of the naïve B cell repertoire. By contrast belimumab may promote negative selection of autoreactive activated naïve B cells and plasmablasts.

Background Pathologic T cell-B cell interactions and production of autoantibodies are hallmark features of SLE. T follicular helper (Tfh) cells are generally considered the principal T cell population capable of helping B cells. However, distinct T cell populations can augment B cell responses in chronically inflamed peripheral tissues. We recently described a dramatically expanded population of T peripheral helper (Tph) cells that promotes B cell responses in synovium of patients with seropositive RA. Here we evaluate the frequency, phenotype, and clinical associations of Tph cells in the circulation of patients with lupus.

Methods Mass cytometry data from the Accelerating Medicines Partnership RASLE Network were used to quantify cell populations in PBMCs from 27 lupus nephritis patients, 27 RA patients, and 25 non-inflammatory controls. Frequencies of Tph cells (PD-1hi CXCR5+ CD4+ T cells), Tfh cells (PD-1hi CXCR5+ CD4+ T cells), and CD21low CD19+ B cells were quantified by standardized gating, and associations with SLEDAI and dsDNA titers were assessed. For in vitro T cell-B cell co-cultures, sorted Tph cells, Tfh cells, or control T cell populations from SLE patients were co-cultured with memory B cells and stimulated with SEB +LPS, and CD38hi CD27+ plasmablasts were quantified at day 5.

Results We first confirmed that Tph cells (PD-1hi CXCR5+ CD4+ T cells) from SLE patients possess B cell helper function, as we previously observed in RA. Tph cells sorted from blood of 5 different lupus patients strongly induced B cell differentiation into CD38hi CD27+ plasmablasts in vitro (figure 1A, n=5 donors). By mass cytometry, Tph cells are markedly expanded in the circulation of SLE patients compared to non-inflammatory controls (4.3-fold increase, p<0.0001, figure 1B). Tfh cells are also increased in the SLE patients compared to controls (1.9-fold); however, the magnitude of the increase in Tph cells in SLE patients well exceeds that of Tfh cells. Tph cell frequency is higher in lupus nephritis patients with dsDNA titers >50 (p=0.017) and with SLENA-SLEDAI >10 (p=0.046) compared to patients with lower disease activity measures. Similar associations with disease activity were not observed for Tfh cells. Expression of surface receptors on Tph cells from SLE and RA patients was similar. A strong positive correlation emerged between the frequencies of Tph cells and CD21low B cells, an activated B cell population rather than B1 cells. Tph cell frequency is also positively correlated with unmutated IgM sequences in subjects treated with chronic belimumab (p=0.03). In contrast, no correlation was seen between Tfh cells and CD21low B cells in SLE patients.

Conclusions Tph cells are markedly expanded in the circulation of patients with SLE and demonstrate robust B cell responses compared to RA patients.