inflammation in the pathogenesis of disease. NZM2410 lupus prone mice, expressing a truncated ER functional knockout, survived longer and had significantly reduced renal disease. Yet, a complete knockout of ER was not protective, suggesting the truncated isoform may be protective with the full-length gene necessary for disease. These findings underscore the importance of defining the role of ER in lupus.

Methods While the hormonal impact of estrogen and ER is well studied, less is known about the transcriptional impact of ER in immunity. Our goal is to identify the molecular mechanisms utilized by liganded ER in regulating the inflammatory milieu. To accomplish this, we have identified ER associated target genes, transcription factors and genes involved in the immune response, histone acetylation, and immune-related signaling pathways, and determined differences in expression. B cells isolated from 15 female African American lupus patients and 8 age and race matched healthy controls were used for the analysis. In an effort to further understand the molecular mechanisms behind ER function, we examined the transcriptional effects of ER on the inflammatory response. Transient transfections of full length ER (66 kDa) and a shortened isoform ER46 (lacking the AF-1 activation domain and similar to the truncated ER functional knockout) were initially performed in the human breast cancer cell line MDA-MB-231, which lacks ER.

Results RNA-seq analysis indicates that 64% of ER associated target genes were differentially expressed between the two groups. The majority of these genes were upregulated in lupus patients compared to controls. Genes with increased expression included TLRs, NFB related transcription factors and IL-1. Preliminary results from the transfection experiments indicate that both ER isoforms reduce mRNA expression of the inflammatory cytokines IL-6 and IL-1 twenty-four hours after stimulation with a TLR4 agonist. A decrease in cytokine expression was observed when the short isoform ER46 was overexpressed in relation to ER66. Additional transfections will be carried out in immune relevant cells such as B cells, monocytes, macrophages or dendritic cells.

Conclusions These results support a role for ER in the pathogenesis of SLE via regulation of inflammatory mediators. Future goals include utilizing high throughput sequencing technology to examine the transcriptional impact of ER in monocytes of African American pediatric lupus patients.

Funding Source(s): None

181 ASSOCIATED FACTORS TO THE PRESENCE OF SERIOUS INFECTIONS IN A LARGE COHORT OF JUVENILE-ONSET SYSTEMIC LUPUS ERYTHEMATOSUS

Jose Maria Pego Reigosa*, Vicenç Torrente-Segarra, Victor Del Campo Perez, Tarek Salman-Monte, Javier Navarrete-Garcia, Francisco Javier Lopez-Longo, Juan Ovales, Paula Rubio, Maria Galindo Izquierdo, Jose L. Andreu-Sanchez, Jaime Calvo Alen, Esther Uriarte, Eva G. Tomero-Muriel, Angel Leon-Rodríguez, Mercedes Freire-González, Victor Martinez-Tabora, Minia Moreno-Martinez-Losa, Monica Ibáñez-Barceló, Ana Lois-Iglesias, Ana Sánchez-Atirio, Loreto Horcada, Figo Rua-Figueroa, Complejo hospitalario Universitario Vigo; Rheumatologist; Parc de Salut Mar, Hospital de Bellvitge; Hospital General Universitario Gregorio Marañón; Hospital Gregorio Marañón; Hospital Germans Trias I Pujol; Hospital Universitario 12 De Octubre; Hospital Puerta de Hierro; Hospital Universitario Aragón; Hospital Donostia; Hospital de la Princesa; Hospital Miguel Servet; Hospital Juan Canalejo; Hospital Marqués de Valdecilla; Parc Taulí; INIBIC-CHUAC; Hospital Príncipe de Asturias; Complejo Hospitalario de Navarra; Hospital Dr. Negrín

Abstract 181 Figure 1 Time to 1st infection based on immunosuppressant treatment

Background Serious infections are included as one of the main causes of mortality in juvenile-onset systemic lupus erythematosus (SLE) patients (Torrente-Segarra et al) and a predictor of poor prognosis in SLE. We aimed to assess the incidence of serious infection and investigate the associated factors and clinical impact in a large jSLE retrospective cohort.

Methods All patients in the Spanish Rheumatology Society Lupus Registry (RELESSER) who meet 4 ACR-97 SLE criteria with disease onset before the age of 18 (SLE) (Rua-Figueroa et al), were retrospectively investigated for serious infections (defined as either the need for hospitalization with parenteral antibiotherapy for a potentially fatal infection or death caused by the infection). Patients with and without infections were compared in terms of jSLE severity, damage, comorbidities, and demographic characteristics. A multivariable Cox regression model was built to calculate hazard ratios (HRs) for the first infection.

Results A total of 353 jSLE patients were included: 88.7% female, median age at diagnosis: 14.3 years (SD 2.9), and mean disease duration: 16.0 years (SD 9.3). A total of 104 (29.5%) patients suffered 1 serious infection (1: 55.8%; 2–5: 38.4%, and 6 infections: 5.8%). Sociodemographic data is shown in table 1.

Total serious infections recorded in these patients numbered 205. The incidence rate was 3.7 (95%CI: 3.24–4.2) infections per 100 patient years.

In the bivariate analysis we found association between serious infections and smoking (p=0.018), lupus nephritis (p<0.001), kidney transplantation (p=0.017), corticosteroids use (p=0.02), higher corticosteroids dosage (p<0.001), immunosuppressants use (p<0.001)- azathioprine, mycophenolate, cyclophosphamide and rituximab, hospitalization due to SLE flare (p<0.001), higher SLEDAI score (p=0.026), higher KATZ score (p<0.001) and higher CHARLSON score (p=0.02).

Serious infection localization and causal agent are described in table 1, being respiratory and bacterial infections the most frequent, respectively.

In the logistic regression analysis the use of cyclophosphamide, mycophenolate and rituximab and SLICC score showed association to serious infection (OR 2.55 [1.44–4.52], OR 1.4 [1.17–1.66], respectively; p<0.001). In the Cox regression
analysis, the following were all associated with serious infection (p<0.01): splenectomy, use of cyclophosphamide, mycophenolate and rituximab, which is shown in figure 1 and figure 2.

Conclusions In the largest observational European Registry of SLE patients, one third of the jSLE patients suffered serious infections. Higher SLEDAI score, renal involvement and immunosuppressant and corticosteroids use were independent associated factors to the presence of serious infection in jSLE, as well as smoking.

Funding Source(s): FIS Grant PI11/02857 (Instituto Carlos III, Fondos FEDER) has supported this work.

Abstract 182 Table 1 Immunomodulatory Medication Use in Youth with Newly-Diagnosed SLE, N=650

<table>
<thead>
<tr>
<th>Proportion with prescription</th>
<th>Within 3 months</th>
<th>Within 6 months</th>
<th>Within 1 year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Immunomodulatory medication</td>
<td>428 (66)</td>
<td>460 (71)</td>
<td>511 (78)</td>
</tr>
<tr>
<td>(hydroxychloroquine or immunosuppressant)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydroxychloroquine</td>
<td>374 (58)</td>
<td>407 (63)</td>
<td>457 (70)</td>
</tr>
<tr>
<td>Immunosuppressant</td>
<td>114 (18)</td>
<td>162 (25)</td>
<td>221 (34)</td>
</tr>
</tbody>
</table>

Immunosuppressant medications include: mycophenolate mofetil, azathioprine, leflunomide, methotrexate, tacrolimus, and oral cyclophosphamide.

Factors contributing to suboptimal immunomodulatory medication use in this population.

Funding Source(s): The Childhood Arthritis and Rheumatology Research Alliance, Alpha Omicron Pi Foundation