Across ethnicity. For example, CD4 T cells in African-Americans have a higher expression of type 1 and type 2 interferon pathways. In contrast, myeloid cells have several upregulated pathways in Caucasians, including ERK/MAPK signaling.

Conclusions African-American lupus nephritis patients may have a stronger interferon pathway activation in infiltrating immune cells. Several other pathways, including ERK/MAPK, are differentially expressed in infiltrating cells based on ethnicity. These results suggest that ethnicity might predict a response to both current and upcoming treatments, paving the way for a more personalized approach to treatment in lupus nephritis. Further work in Phase 2 of AMP will confirm and extend these findings.

Funding Source(s): NIH foundation partnership with AbbVie, Biogen, Bristol-Myers Squibb, Celgene, GlaxoSmithKline, Johnson and Johnson, Lilly, Merck, Pfizer, Sanofi, Takeda, and Verily.

206 IMPACT OF THE BIRTH MONTH IN THE DEVELOPMENT OF SYSTEMIC LUPUS ERYTHEMATOSUS

Renan Frittoli, Roberto Marini, Lilian Costallat, Simone Appenzeller*. University of Campinas

10.1136/lupus-2019-lsm.206

Background There is evidence that most individuals with Systemic Lupus Erythematosus (SLE) have been born at the end of the winter season, mainly because of the influence of the mother’s exposure to sunlight during pregnancy, possibly affecting vitamin D metabolism. The objective was to evaluate the influence of the birth month in the development of SLE.

Methods We included consecutive patients with childhood-onset SLE (cSLE) (age at onset of disease 16 years) and adult-onset SLE (age of onset of disease >16 years) from the Rheumatology outpatient unit in Brazil. The control group consisted of volunteers no history of autoimmune disease. The review of medical records the patient’s date of birth was obtained and the patients were classified according to the birth month in the development of SLE. The control group consisted of volunteers no history of autoimmune disease. The review of medical records the patient’s date of birth was obtained and the patients were classified according to the months and seasons of the year in which they were born. The results were presented in a descriptive way and the statistical analysis was performed through the chi-square test. For all analyses p<0.05 was considered statistically significant.

Results A total of 1460 subjects (760 patients and 700 controls) were included. Of the patients analyzed, 662 (87.1%) were adult-onset SLE and 98 cSLE (12.89%). The mean age of the adult SLE was 42.4 years (SD ±12.7) and cSLE was 17.8 years (SD ±4.4). The controls had a mean age of 24.5 years (SD ±10.1). Patients who were born at the end of the winter season (n=65 [8.5%]) presented a birth frequency in winter (35.7%) twice as high as those born in summer (17.34%) and spring (17.34%). A significant difference was also observed in cSLE in the month of August (which is winter in Brazil) (p=0.042), when compared to the controls. Adult SLE had no differences with the control group in any month (p>0.05).

Conclusions It is believed that the winter season interferes with the development of SLE, especially in cSLE. These results may reinforce the idea that climate can be a contributing factor to the development of cSLE.

Funding Source(s): CNPq

FAPESP

207 A HIGH GENETIC RISK SCORE IS ASSOCIATED WITH EARLY DISEASE ONSET, ORGAN DAMAGE AND DECREASED SURVIVAL IN SYSTEMIC LUPUS ERYTHEMATOSUS

Sarah Reid1, Andréi Alexsson2, Martina Fredlund3, Johanna Sandling4, Karin Bolin5, Elizabeth Svenningsson6, Andreas Jönsson6, Christine Bengtsson7, Iva Gunnarsson7, Anders A Bengtsson7, Solbritt Ranta-Pää-Dahlgqvist4, Maija-Leena Elena8, Ann-Christine Svinen4, Christopher Sjöwall9, Lars Ronnblom10, Dag Leonard11. Uppsala university; 2Department of Medical Sciences, Science for Life Laboratories, Rheumatology, Uppsala University; 3Linköping University; 4Karolinska Institute; 5Department of Rheumatology, Skåne University Hospital; 6Christine Bengtsson; 7Department of Medicine, Karolinska Institute; 8Department of Public Health and Clinical Medicine/Rheumatology, Umeå University

10.1136/lupus-2019-lsm.207

Background Systemic lupus erythematosus (SLE) is a chronic, autoimmune disease with a complex genetic etiology. Over 100 risk genes for SLE have been identified at genome-wide significance, but their overall effect on disease severity has not previously been studied. We therefore assessed the relationship between a high genetic risk score and the development of organ damage in SLE.

Methods Patients with SLE, who met 4 ACR criteria (n=1001), and healthy controls (n=2802) were genotyped using a 200K Immunochip SNP Array (Illumina). A genetic risk score (GRS) was assigned to each individual based on 57 SLE risk loci which have previously shown association (p<5×10–8) with SLE according to Chen et al (Curr Opin Rheumatol, 2017; 29(5):423–433), weighted by their SLE susceptibility odds ratios (ORs). Clinical data was retrieved from medical charts.

Results SLE prevalence increased with increasing GRS (figure 1A) and was higher in the highest compared to the lowest GRS-quartile (OR 12.32 (9.53–15.71) p=7.9×10–6) and significantly higher in the high compared to the low GRS-quartile (OR 2.25 (1.83–2.79), p=2.6×10–4). Moreover, patients in the high GRS-quartile displayed decreased survival until the first cardiovascular event (HR 1.65 (1.03–2.64), p=2.6×10–2). Moreover, patients in the high GRS-quartile displayed decreased survival until the first cardiovascular event (HR 1.65 (1.03–2.64), p=2.6×10–2), nephritis (HR 2.16 (1.30–3.59), p=2.8×10–2), anti-dsDNA antibodies (OR 2.25 (1.83–2.79), p=2.6×10–2) and anti-cardiolipin-IgG (OR 2.25 (1.83–2.79), p=2.6×10–2), anti-cardiolipin-IgG (OR 2.25 (1.83–2.79), p=2.6×10–2) and anti-cardiolipin-IgG (OR 2.25 (1.83–2.79), p=2.6×10–2) and anti-cardiolipin-IgG (OR 2.25 (1.83–2.79), p=2.6×10–2). Analysis of renal biopsy data showed that the prevalence of proliferative nephritis was significantly higher in the high, compared to the low, quartile (OR 2.42 (1.30–4.49), p=5.1×10–3). Moreover, the patients in the high GRS-quartile displayed decreased survival until their first organ damage (HR 1.51 (1.04–2.5), p=3.7×10–2), first cardiovascular event (HR 1.65 (1.03–2.64), p=2.6×10–2), nephritis onset (HR 2.53 (1.72–3.71), p=9.6×10–7) and ESKD (6.78 (1.78–26.86), p=6.5×10–3). Lastly, OR for mortality increased with increasing GRS (figure 1D), with a 5 year decrease in overall survival in the high compared to the low quartile (HR 1.82 (1.04–3.19), p=2.4×10–2).

Conclusions A high genetic risk score is associated with earlier disease onset, increased risk of organ damage and impaired survival.