As the prevalence of cryptorchidism in male offspring is higher when their mothers are suffering from preeclampsia or gestational diabetes, we aimed to investigate if a similar association exists between maternal SLE and cryptorchidism in the offspring.

Methods

Methods: We conducted a nationwide study including all male singleton live births in Denmark from 1995 to 2016. Using the Danish nationwide population based registers, we assessed the occurrence of cryptorchidism according to prenatal disease-state of the mothers (SLE/no SLE). Cryptorchidism was assessed as both any diagnosis of cryptorchidism and diagnosis of cryptorchidism and corrective surgery. Using Cox proportional hazards models we calculated hazard ratios (HRs), accounting for varying age at time of diagnosis, and adjusting for maternal age, smoking during pregnancy, pre-gestational BMI, parity, educational level and ethnicity.

Results

Among 690,240 boys, 352 boys were born of mothers with pre-existing SLE. Of those, 15 (4.3%) boys were diagnosed with cryptorchidism, and seven boys (1.9%) underwent corrective surgery. We found an adjusted HR of 1.68 (95% CI: 1.01, 2.78) for cryptorchidism and 1.46 (95% CI: 0.69, 3.06) for cryptorchidism with corrective surgery, among boys born by mothers with SLE, compared with unexposed boys. This is consistent with an increased risk of cryptorchidism among the exposed boys, even though the relatively few exposed cases limits the precision of the estimates.

Conclusions

Conclusions: Boys exposed to maternal SLE appears to have higher risk of cryptorchidism, compared with unexposed boys.

Funding Source(s): Aarhus University, the Danish rheumatism society and Karen Elise Jensen foundation.

AFRICAN AMERICAN SLE PATIENTS WITH VARIABLE DISEASE ACTIVITY REVEAL ALTERATIONS IN SIGNALING PATHWAYS AND SOLUBLE MEDIATORS THAT ARE MORE PRONOUNCED THAN EUROPEAN AMERICAN PATIENTS

1. Samantha Slight-Webb, 1 Miles Smith, 2 Eliza Chakravarty, 1 Cristina Arriens, 1 Teresa Abele, 1 Heiden Meecker, 3 Paul J Utz, 1 Joel Guthridge, 1 Judith A James. 1 Oklahoma Medical Research Foundation, 2 Oklahoma Medical Research Foundation; University of Oklahoma; 3 Stanford University

Background

Systemic lupus erythematosus (SLE) is an autoimmune disorder with a variable clinical presentation and periods of waxing and waning disease. Heterogeneity in SLE is influenced by genetic and non-genetic susceptibility found in different ethnicities that drive disease expression and severity. The immune pathways that contribute to heightened disease activity in lupus and immune variation by race are critical to understanding SLE disease mechanisms and outcomes.

Methods

Peripheral whole blood samples of European or African American healthy controls (n=18) and SLE patients with either high (SLEDAI4) (n=20) or low (SLEDAI <4) (n=20) disease activity were stimulated for 4 min with either interferon-(IFN), PMA and ionomycin, or Toll-like receptor (TLR) ligands for either TLR4, TLR7/8 or TLR9 for phospho-protein analysis, or 24 hours for cytokine analysis of cell culture supernatants. Phenotype and phospho-protein analysis was assessed by CyTOF and cell heterogeneity was analyzed using t-SNE and manual gating. Soluble mediators were assessed using 37-plex xMAP assays and ELISA. All SLE patients met ACR classification criteria.
Results European American SLE patients with high disease activity were differentiated from patients with low disease activity by reduced frequencies of peripheral B cells, specifically naïve B cells (CD27-IgD+CD24lo) (p=0.0101) and double negative B cells (CD27-IgD-) (p=0.0220), while African American patients with high disease activity had elevated frequencies of memory B cells (CD27+IgD-CD38+) (p<0.05) compared to patients with low disease activity. Several cell subsets had increased expression of activation markers during high disease activity including B cells (p=0.0350) and plasmacytoid dendritic cells (pDCs) (p=0.0435) in European Americans (figure 1A), and neutrophils (p<0.05), pDCs (p=0.005), CD8+T Cells (p=0.0003) and NKT cells (p=0.0033) in African Americans (figure 1B). Following whole blood stimulation with IFN, African American high disease activity patients were distinguished by reduced ability to activate pSTAT5 in almost all major cell populations (p<0.05), and pSTAT3 in monocytes (p=0.0157), granulocytes (p=0.01) and B cells (p=0.0409) compared to low disease activity patients and controls, possibly due to higher basal levels of activation (figure 1). Further, African American patients with high disease activity had significantly elevated cytokine production at baseline compared to healthy controls and European American SLE patients that translated to a reduced fold change in soluble mediators following stimulation (p<0.01).

Conclusions Our results support a model where race influences heightened SLE disease activity mechanisms with alterations in B cell signaling, and greater dysregulation in phospho-signaling and pro-inflammatory soluble mediators observed in African American patients.

Funding Source(s): NIH (U19AI082714, U19AI082719, U54GM104938, P30GM103510, U01AI101934)