the 9 patients with renal remission, 4 relapsed. Finally, 4 patients required dialysis, including 1 death.

Conclusion The presence of intrarenal B cells rarely forms TLO in lupus nephritis. Due to the small sample size, we were unable to determine their prognostic role. Nevertheless, we report here the longer time to renal remission for grade 3 and 4 infiltrates; prospective studies with repeated renal biopsies are needed to better characterize their relationship to disease progression.

Funding None

O22

CORRELATION BETWEEN INTERSTITIAL CD8+ T CELL INFILTRATION AND FIBROTIC PROCESSES IN A MOUSE MODEL OF LUPUS NEPHRITIS

Pauline Montigny, Aurélie Degroof, Davide Busa, Frédéric Houssiau, Bernard Lauwers. 1Pôle de Pathologies Rhumatologiques Systémiques et Inflammatoires, UCLouvain, Louvain; 2Service de Rhumatologie, CHU UCL Namur, Yvoir; 3Plateforme de Cytométrie de Flux, Institut de Recherche Expérimentale et Clinique, UCLouvain, Louvain; 4Service de Rhumatologie, Cliniques Universitaires Saint Luc, Bruxelles, Belgium

10.1136/lupus-2020-eurolupus.33

Background Tubulo-interstitial damage during lupus nephritis (LN) is associated with poor renal prognosis in the long run. Here, we describe the progression of tubulo-interstitial fibrosis and immune cells infiltration with emphasis on CD8+ T cells, in parallel with renal outcomes in a mouse lupus model.

Methods We collected blood, urine and kidneys from 39 B6/Sle1.Sle2.Sle3 lupus-prone mice, before disease onset and at different stages of disease progression. RNA was extracted from kidneys and hybridized on Mouse Gene 2.0 ST exon arrays. Histopathological scores (NIH Activity and Chronicity Indexes) and digital quantification of fibrosis, IgGk deposits, CD8+ and CD3+ T cells were performed on total kidney. Renal CD8+ T cell phenotypes were determined by flow cytometry. Plasma urea and albuminuria were measured by immunoenzymatic assays.

Results IgGk deposits, CD8+ T cell infiltration and interstitial fibrosis increase with the progression of renal disease, evaluated by histopathological scores and plasma urea. Further, digital quantifications allowed us to identify a significant correlation (r=0.45, p=0.011) between local CD8+ T cell population and fibrosis, while total CD3+ cells population and IgGk deposits did not display such association. Moreover, characterization of CD8+ T cell subpopulations showed that fibrosis is more specifically linked to effector functions of CD8+ T cells. Transcriptomic analyses supported this association, with a high correlation between mean expression of effector functions transcripts and the presence of a fibrotic signature (r=0.92, p<0.0001).

Conclusions Our results support the association between CD8+ T cell tubulo-interstitial infiltration and renal outcomes in a mouse lupus model. Further, a strong correlation is identified between effector functions of CD8+ T cells and fibrotic processes, opening new avenues of research in the pathogenesis of LN.

Acknowledgements This work was supported by F.R.S.-F.N.R.S and by Fondation Roi Baudouin