Background Systemic Lupus Erythematosus (SLE) has a large clinical spectrum, ranging from mild to severe disease. Some studies have proven correlations between specific autoantibodies and particular clinical manifestations. The aim is to assess if there is any correlation between autoantibodies and clinical manifestations in our sample.

Methods Retrospective longitudinal study of juvenile-onset SLE patients evaluated in Pediatric Rheumatologic unit of a tertiary hospital. All patients fulfilled both 2012 and 2019 EULAR/ACR classification criteria for SLE. Juvenile-onset was defined as age at diagnosis <18 years. Demographics and clinical characteristics were collected. Statistical analysis was performed with qui-square test by SPSS® software. Results were considered statistically significant if p<0.05.

Results 30 jSLE patients were included (90% female) with median (min-max) age of 21 (16–35) years old, with mean (SD) age of diagnosis of 15.8 ± 2.1. Mucocutaneous manifestations occurred in 25, articular involvement in 16, hematologic in 14, renal in 12, pulmonary in 1, pleuropericardial in 2 and another 2 with thrombotic events. All were positive for antinuclear antibodies: 18 with speckled pattern, 11 homogeneous and 1 nucleolar. 11 jSLE were positive for antinucleoselosal autoantibodies, 10 anti-SSA antibodies, 8 anti-histone, 7 anti-ribosomal P protein antibody, 4 anti-Sm, 4 anti-RNP, 4 Lupus anticogulant, 3 had autoantibodies against β2-glycoprotein I, 2 anti-cardiolipin and 2 anti-SSB antibodies. The presence of antinucleosomal (p=0.003) and anti-SSA (p=0.04) antibodies was significantly associated with articular involvement; anti-histone with renal manifestations (p=0.005) and lupus anticogulant in serosal involvement (p=0.02).

Conclusions Anti-histone antibodies have been linked to lupus nephritis disease activity. The other associations are not described in the literature. Sample size is a limitation and further studies in our population are required.

Methods Female mice (Balb/c, C57) are immunized with either a lupus-inducing antigen (DNRAb+) or a control antigen (DNRAb-). A month later, the blood-brain barrier is abrogated to allow antibody entry to the hippocampus. We investigate spatial cognition with the object-place memory (OPM) task and the neural substrate with tetrode recordings in the CA1 region of the hippocampus. Neural data are analyzed via spike sorting (Spike2) to reveal place cell properties of CA1 neurons, as well as power spectral densities of network oscillations (Matlab, Chronux).

Results A discrimination ratio reveals that DNRAb+ mice examine the moved object significantly less than controls during OPM, indicating impaired spatial memory. The neural data show abnormal place cell properties in DNRAb+ mice, such as expanded place field size, reduced stability, and lower spatial information when compared to DNRAb- mice. Bayesian path reconstruction analysis reveals that DNRAb+ place cells have significantly higher error compared to the DNRAb-group. Moreover, we find significantly altered co-modulation of theta-gamma oscillations when the mice examine the objects during OPM.

Conclusions Our studies reveal that the CA1 ensemble encodes critical aspects of the OPM task through place cell dynamics and theta-gamma coupling. The disruptions of these processes caused by DNRAbs may explain the abnormal spatial encoding that occurs in NPSLE. Our data offer a neural substrate for bioelectronic therapies aimed to alleviate NPSLE-related cognitive impairment.

Acknowledgments The studies are funded by grants from NIH (P01-AI102852, P01-AI073693) and DOD (2019 Impact Award) to PTH.