feron-related proteins, neutrophils, and cell death processes could be driving the inflammatory response in these subgroups. Three different clusters had a predominant T cell signature, which were supported by lymphocyte counts (figure 2).

Conclusion Our data support a diverse molecular profile in CLE that further adds to the clinical variations of this skin disease, and may affect disease course and treatment selection. Future studies with a larger and diverse CLE patient cohort are warranted to confirm these findings.

Cutaneous lupus

LYMPHATIC DYSFUNCTION IN LUPUS CONTRIBUTES TO CUTANEOUS PHOTOSENSITIVITY AND LYMPH NODE B CELL RESPONSES

1,2William G Ambler, 1,3Mir Howlander, 1,3Madhavi Latha S Chalasani, 1Ethan S Seltzer, 1,3JiHyun Sim, 1Jinyeon Shin, 1,1Noa Schwartz, 1,2Dragos Dascoveanu, 2Camila B Carballo, 3Ecem Sevim, 1,2Salma Siddique, 1,2,5Scott Rodeo, 1,6Doruk Erkan, 1,2Raghu P Kataru, 1,2Babak Mehrara, 1,2,3,5Theresa T Lu. 1Autoimmunity and Inflammation Program, Hospital for Special Surgery Research Institute; New York, NY, USA; 2Pediatric Rheumatology, Department of Medicine, Hospital for Special Surgery; New York, NY, USA; 3Department of Microbiology and Immunology, Weill Cornell Medicine; New York, NY, USA; 4Division of Plastic and Reconstructive Surgery, Department of Surgery, Memorial Sloan Kettering Cancer Center; New York, NY, USA; 5Rheumatology, Department of Medicine, Hospital for Special Surgery; New York, NY, USA; 6Physiology, Biophysics, and Systems Biology Graduate Program, Weill Cornell Medicine, New York, NY USA; 7Orthopedic Soft Tissue Research Program, Hospital for Special Surgery Research Institute; New York, NY, USA; 8Department of Orthopedics, Hospital for Special Surgery; New York, NY, USA

Patients with systemic lupus erythematosus (SLE) are photosensitive, developing skin inflammation with even ambient ultraviolet radiation (UVR), and this cutaneous photosensitivity can be associated with UVR-induced flares of systemic disease, with increased autoantibodies and further end organ injury.

Mechanistic insight into the link between skin disease and autoimmunity is limited. Signals from skin are transmitted directly to the immune system via lymphatic vessels, and here we show evidence for potentiation of UVR-induced lymphatic flow dysfunction in SLE patients and murine models. Improving lymphatic flow by manual lymphatic drainage (MLD) or with a transgenic model reduces both cutaneous photosensitivity and lymph node B cell responses. Mechanistically, improved flow restrains B cell responses by activating a fibroblastic reticular cell-monocyte axis. Our results point to a lymphatic flow-lymph node stromal axis as a link between photosensitivity and autoimmune responses and as a therapeutic target in lupus, have implications for understanding skin-immune interactions in other diseases such as skin cancer, and suggest the possibility of MLD as an immediately available, cost-effective adjunctive treatment in lupus and related diseases.

PLASMACYTOID DENDRITIC CELLS ARE NOT MAJOR PRODUCERS OF TYPE 1 INTERFERONS IN CUTANEOUS LUPUS

Thomas Vazquez, Nilesh Kodali, DeAnna Diaz, Jay Patel, Emily Keyes, Grant Sprov, Meena Sharma, Mariok Ogawa-Momohara, Madison Grinnell, Josh Dan, Victoria P Werth. Corporal Michael J. Crescenz VAMC, Philadelphia, PA, USA, Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA

Type 1 interferons (IFN-1) are major drivers of disease activity in systemic (SLE) and cutaneous lupus erythematosus (CLE). Plasmacytoid dendritic cells (pDCs) are the major producers of IFN-1 during viral infection. Therefore, pDCs have been hypothesized to be the primary IFN-1 producers of Type 1 Interferons in Cutaneous Lupus.

10.1136/lupus-2022-lupus21century.51