(CD68+CD163+) (23.7%, 21.6 – 31.7), M2 Macrophages (CD68+CD163+) (35.9%, 26.4 – 40.7), and CD16+ cells (25.7%, 20.4 – 29.5) (figure 3). Further verification using a Z-axis overlay of intracellular markers on tSNE plots of immune cell clusters identified by CyTOF confirmed low expression of IFN-1 and the interferogenic pathway, phosphorylated stimulator of interferon genes (pSTING), in the pDCs (figure 2B).

Conclusions Taken together, these findings suggest pDCs may not play the central role in CLE as major IFN-1 producers and myeloid cells are larger contributors of IFN-1 in numbers and as a percent, pDCs may have a pathogenic role in CLE through IFN-1-independent mechanisms.

Molecular Biology of Lupus

902 LOSS-OF-FUNCTION VARIANTS IN SAT1 CAUSE X-LINKED CHILDHOOD-ONSET SYSTEMIC LUPUS ERYTHEMATOSUS

Lingxiao Xu1,2,9, Jian Zhao10, Qing Sun11, Yue Xu1, Lei Wang1, Ting Liu12, Yujunian Wu12, Jingfeng Zhu11, Linyu Geng1, Yun Deng1, Alexander Aveleyra-Kirsch12, Diane L Kamen1, Jim C Oates1,8, Priath Rai2, Edward K Wakeland3, R Hal Scelfield4,6, Joel M Gutchess4,6, Judith A James4,6, Bevra H Hahn13, Deborah K McCurdy7, Fang Wang9, Miaojia Zhang7, Wenfeng Tan1, Gary S Gilkeson13, Betty P Tsao1. Division of Rheumatology and Immunology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA; Department of Rheumatology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China; Department of Immunology, University of Texas Southwestern Medical Center, Dallas, Texas, USA; Arthritis & Clinical Immunology Research Program, Division of Genomics and Data Sciences, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA; Veterans Affairs Medical Center, Oklahoma City, OK, USA; Oklahoma Clinical and Translational Science Institute, University of Oklahoma Health Sciences Center, 920 NE Stanton L. Young, Oklahoma City, OK, USA; Division of Allergy, Immunology, and Rheumatology, Department of Pediatrics, University of California Los Angeles, Los Angeles, CA, 90095, USA; Ralph H. Johnson VA Medical Center, Medical Service, Charleston, SC, USA; Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China; Department of Rheumatology and Immunology, Wuxi People’s Hospital, Wuxi, Jiangsu, China; Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China; Cardiovascular Developmental Biology Center, Department of Regenerative Medicine and Cell Biology, College of Medicine, Children’s Research Institute, University of South Carolina, Charleston, South Carolina, USA; Division of Rheumatology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA; Presenter.

Given the need for more effective treatments, there is a pressing need for a better understanding of chronic pain, including pain in SLE. Discovery of peripheral sodium channels (Nav1.7, Nav1.8, Nav1.9) and of pain resilience genes (KCNQ2, KCNQ3) opens up the possibility of targeting peripheral generators of pain (primary sensory neurons) without affecting the heart or CNS, thus enabling new and more effective pain therapies devoid of CNS side effects or addictive potential.

In this lecture I will review several lines of recent progress. Molecular genetics has validated peripheral sodium channels Nav1.7, 1.8 and 1.9 as strong drivers of firing of peripheral pain-signaling neurons and thus of human pain. Building upon this, recent studies have begun to provide proof of concept that Nav1.7-specific blockers can reduce pain. In parallel, genomically-guided pharmacogenomic approaches indicate that these sodium channels (Nav1.7, Nav1.8, Nav1.9) and of pain resilience genes (KCNQ2, KCNQ3) opens up the possibility of targeting peripheral generators of pain (primary sensory neurons) without affecting the heart or CNS, thus enabling new and more effective pain therapies devoid of CNS side effects or addictive potential.

Molecular genetics has also begun to identify pain resilience genes, pointing toward another set of molecular targets for pain therapy. While there is still a lot of work to do, the goal of more effective, non-addictive treatments for chronic pain appears to be in sight.

Lay summary We are beginning to understand, in exciting detail, the molecular drivers of human pain. This new knowledge is bringing us closer to the goal of more effective, non-addictive treatments for chronic pain.
encodes spermidine/spermine-N1-acetyltransferase 1 (SSAT1), a rate-limiting enzyme in polyamine catabolism. Young male KI mice exhibited neutrophil defects and decreased proportions of Foxp3+CD4+ T-cell subsets. Circulating neutrophil counts and proportions of Foxp3+CD4+ T cells correlated with decreased plasma levels of spermine in treatment naïve, incipient SLE patients.

Conclusions We identified two novel SAT1 loss-of-function variants, showed the ability of the frameshift variant to confer murine lupus, highlighted the pathogenic role of dysregulated polyamine catabolism, and identified SAT1 LOF variants as new monogenic causes for SLE.

Genetics

DECODING GENOME-WIDE ASSOCIATION STUDY (GWAS) HITS FOR LUPUS USING MASSIVELY PARALLEL REPORTER ASSAYS

1Qiang Wang, 2Xiaoming Lu, 1Matthew T Weirauch, 1Peter Nigrovic. 1Boston Children’s Hospital/Harvard Medical School; 2Cincinnati Children’s Hospital Medical Center

Background Systemic lupus erythematosus (SLE) is a chronic autoimmune disease with a strong genetic component (Block, Winfield et al. 1975, Deapen, Escalante et al. 1992, Alarcon-Segovia, Alarcon-Riquelme et al. 2005) and most of the genes involved have modest impact, complicates genetic dissection of disease etiology (Eberle, Ng et al. 2007, Stahl, Wegmann et al. 2012). To overcome this, a sensitive approach to identify risk alleles with small gene effects called genome-wide association studies (GWAS) has been applied for SLE studies and more than one hundred loci have been linked with disease risk (Gateva, Sandling et al. 2009, Bentham, Morris et al. 2015, Morris, Sheng et al. 2016, Langefeld, Ainsworth et al. 2017, Zhang, Zhang et al. 2018). Therefore, decoding GWAS is a promising strategy to identify novel drug targets in SLE. However, translating GWAS hits into disease pathogenic mechanism has proven difficult as most of the identified disease-associated hits are noncoding single-nucleotide polymorphisms (SNPs), suggesting a regulatory role, and cannot be distinguished from others that reside incidentally within risk loci due to Linkage Disequilibrium (LD), which significantly increase the number of SNPs need to be investigated. A high-throughput screen method is therefore ideal for this task. Massively parallel reporter assays (MPRAs) that test the translational impact of candidate SNPs have been applied for